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Abstract: In this work, in a rectangular domain, we study a mixed problem for a fourth
order differential equation degenerating on the bound of the domain. By applying the
method of separation of variables to the considered problem, a spectral problem for an
ordinary differential equation has been obtained. Then, the Green’s function of the
spectral problem has been constructed, with the help of which it is equivalently reduced
to the second kind Fregholm integral equation with a symmetric kernel. Using the
theory of integral equations with symmetric kernels the existence and some properties
of the eigenfunctions and eigenvalues of this spectral problem has been studied. The
solution of the original problem has been written as the sum of a Fourier series with
respect to the system of eigenfunctions of the spectral problem. Uniformly convergence
of this series has been proved.
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I. INTRODUCTION

The theory of differential equations is known for its long and rich history. Up until the last quarter
of the 20th century, this field focused primarily on differential equations of integer order.
However, with the advent and development of fractional calculus (encompassing both differential
and integral analysis) in the late 20th century, researchers began exploring differential equations
that incorporate fractional derivatives. Today, a significant number of scientific articles address
initial, boundary, and spectral problems for differential equations — both ordinary and partial —
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that involve fractional derivatives in various forms (see, for example, [1]-[4] and [5], and the
references therein). Additionally, the books [6] and [7] have played a pivotal role in advancing
this area of research.

We provide a brief review of studies related to this article’s focus: a fourth-order partial
differential equation featuring a fractional derivative of an unknown function with respect to the
time variable.

The papers [8]-[10] investigate initial-boundary value problems for one-dimensional and two-
dimensional fourth-order equations involving the Caputo fractional differentiation operator with
respect to the time variable. Additionally, [10] addresses the inverse problem as well. Initial-
boundary value problems for fourth-order equations incorporating fractional differentiation
operators such as Hilfer, Dzhribashyan-Nersesyan, and Riemann-Liouville are examined in [11],
[12], and [13], respectively. The direct and inverse problems for a mixed-type fourth-order
equation with the Hilfer operator are studied in [14] and [15], respectively. Furthermore, we
highlight the works [17] and [18], which deal with inverse problems concerning the determination
of the order of a fractional derivative in the sense of Riemann-Liouville and Caputo. These are
applied to subdiffusion equations and wave equations with an arbitrary positive operator
possessing a discrete spectrum.

The papers mentioned above focus solely on non-degenerate equations. However, both local and
nonlocal boundary value problems for degenerate partial differential equations containing
fractional derivatives of an unknown function remain poorly unexplored. Investigating boundary
value problems for such equations is highly significant, not only from a theoretical standpoint but
also from a practical perspective. These equations, along with their associated problems,
frequently arise in mathematical modeling across various fields, including gas and
hydrodynamics, the theory of small surface bending, mathematical biology, and other scientific
disciplines.

Initial-boundary value problems for degenerate equations with fourth-order fractional derivatives,
involving both first and second time derivatives, were previously investigated in [18]-[20].

In the present paper we will prove the uniquely solvability of a mixed problem for a fourth order
partial differential equation that degenerates on the boundary of the considered domain.

Il. FORMULATION OF THE PROBLEM

In the domain Q = {(X,t) ‘0<x<10<t <T} , we consider the following equation
c D(’j;u(x,t)+[xﬂuxx(x,t)]XX =f(xt), (@

where . Dg; is Caputo fractional differential operator ¢ order [22]

o1t g"™(2)dz
¢D{a(t)= F(n—a)-([(t—z)ym . (n=[Re(y)]+1t>0),

o, B, T are given real numbers, such that O<ar <1, 0< <1, T>0; f(x,t)is a given
function on Q2.
First, we introduce the definition of the regular solution of the equation (1).
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Definition 1. A function u(x,t) satisfying in the domain €2 equation (1) and the following
conditions U(x,t)eC(Q), . Dgu(x.t), (x’u, ) €C(Q) is called regular in the domain
Q2 solution of the equation (1).

In the domain €2 we study the following mixed problem for the equation (1):

Problem 1. Find a regular in the domain €2 solution of the equation (1) satisfying the following
initial

u(x,0)=¢(x), 0<x<1(2)

and the following boundary conditions:

2
2o1)=0, Z(wy)-0, nmﬁ(xﬂa “j:o, 0<t<T @

U(l,t):(), o 8)( )

OX

where ¢@(x) is a given function continuous on [0,1], such that (0(1)20,

' _ ! _ H B ' —
¢'(0)=0,¢'(1)=0, leirg[x ) (x)] =0.
Let us consider homogeneous equation of the equation (1):

<Dgu(x,t) =[xﬂuxx(x,t)lx, (xt)eQ.

We will seek a solution of the homogeneous equation satisfying the conditions (3) in the form
u(x,t)=v(x)T(t). Then, with respect to the function T (t), we get the following equation

< D5T (t)—AT (1) =0,

and with respect to v(X), we get the following spectral problem:

Lv:[xﬂv”(x)}" = Av(x), xe(0,1); 4)

x>0 OX

2
v(1)=0, v(0)=0, v'(1)=0, Iimg{xﬁ%}zo, ©)

i.e. a problem finding those values of the parameter A for which there exist nontrivial solution of
equation (4) satisfying conditions (5).
I1l. STUDY OF THE SPECTRAL POROBLEM

Now, we study spectral problem {(4),(5)}. Assume that there exists eigenvalues of the spectral
problem {(4),(5)}. Under this assumption, first, we will define the sign of the eigenvalue 4. To

this end, by multiplying both sides of (4) to the function V(x) and integrating on [0,1], we
obtain

1

/”t'[v2 (x)dx = I[xﬂv”(x)]”v(x)dx .

0

Using the rule of integration by parts two times on the right-hand side of the last equality, we have
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0 + :[x" [v”(x)]2 dx .

A.:[vz (x)dx = {[xﬁv”(x)]l v(x)— xﬁv”(x)v’(x)}

Hence, considering (5), we get the following equality

1 1

ﬂjvz (x)dx = }[xﬂ [v”(x)]2 dx,

0

which implies that 4 >0.

"
Let A =0, i.e. consider the equation [Xﬂv”(x)] =0. It is easy to see that the general solution

of this equation has the form

3B 2-p
V(X) _ X X

S ) o I o)y

where C, ] =14 are arbitrary constants.

+Cx+C,,

By obeying this function to the condition (5), we get

C C
C,=0, C,=0, —2-=0, 2
- (1-p8)(2-8)

from which it follows that C, =C, =C, =C, =0. Hence, v(x)=0.

+C, =0,

Thus, the problem {(4), (5)} can have nontrivial solution only for positive values of 4.

Now, we will prove the existence of eigenvalues and eigenfunctions of the spectral problem {(4),
(5)}. Assuming the right-hand side of (4) is temporarily known function, we construct the Green’s
function of the problem {(4), (5)}. It is unique and represented as follows

2-B)B-F) (1-p)2-pF @-B)2-5)
s> # x>’ 1
e L
2-B)3-8) (1-p)2-p) @-B)2-5)
N s¥ 7 1
RN

Then, using Hilbert’s theorem, the problem {(4), (5)} is equivalently reduced to the following
integral equation [21]

v(x)=/1J1.G(x,s)v(s)ds. (6)

0
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Since G(X,S) is symmetric and continuous kernel, then from the theory of integral equations

with symmetric kernels [21] it follows that equation (6) [hence problem {(4),(5)} has a countable
set of eigenvalues

O<A <A <A<

and corresponding orthonormal eigenfunctions

vy (%),V, (X),V5(X), ey
moreover, any arbitrary function g (x) el, [0,1] expands into a series in these eigenfunctions,

which converges on average.
IV. CONVERGENCE OF BASIC BILLINEAR SERIES

Let {vk (X)}; and {Vk (X)}; be the eigenfunctions and eigenvalues of the spectral problem

{(4),(5)}, respectively.

In this section, we will prove the convergence of some functional series involving these
eigenvalues and eigenfunctions.

Lemma 1. On the interval [0,1] the following series converge uniformly:
SACRS [vk D] ooy

Z a 2
' 2 ’ 2
k=1 k =1 k=1 k=1 A

Proof. Since, for 0< ,6’ <1 the kernel G(X,s) of the integral equation (6) is symmetric,
continuous and positive-definite, then based on Mercer’s theorem [21], we have

G(X,S)=§—Vk(xz:k(s),

particularly
2

iw =G(x,x) <const. (7)

k=1
Hence, it follows that the series Z[ /ﬂk] converges uniformly.
k=1

Now, from the integral equation (6), considering continuity of the function G (X, S) , We obtain

£ 0G( xs)

/ka Vi (s)ds

or

8st ans

ﬂkj v, (s)ds.

Using the equation (4), from the last, we have

R
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v, ()= j%[sﬁv{(’(s)]” ds+ I%[sﬁvz (s)]” ds.

Hence, applying the rule of integrating by parts two times, we get

o {86 (X )reag (s)] - Msﬁv"(S)waL

0

OXOS v

s=0

+|:M|:Sﬂv"(s):|' —Ms/’v"(s)} j + stﬂv”(s)ds.

X “ OXOS “ . OXOS? “
, 2 2
Taking Liig[sﬁvﬁ(s)] =0, 0 g)fgs’o)zo, g gxg’;’l)zo, aG(g:((’l)zo and the
2
0G(x.8) 0°G(xs) for x='5 Vv/(s), [s"v&’(s)] into account,

continuity of the functions :
OX OX0S

we rewrite the last equality in the following form

j'83G xS Sﬂ ” dS \/—J. $H12 63(3 X, S) Sﬁlzvz(s) i
G OX0s’ JA

0

le Sﬂ/253G(X’S) s”*v (s) s
Bl e T o

forms an orthonormal system in L, (0,1). Indeed,

It is easy to show that {SMV{(’ (S)/\/Z} .
k=1

() j'sf”zv;’(s) S (s)ds = (A4 Ay ) Jl.sﬁvlf(s)v;; (s)ds=

1

+(AAn) J.[s/”v” )}” V,(s)ds=

0 0

=<Mm)”ﬂsﬁv:(s)v:;(s)—[s‘*v:(s)]'v (s )}

R TR u (s (s)s=1 " o

0

Then, from (8), it follows that the function v (x)//4, can be considered as the Fourier

.. . ,6/2 836 (X1 S) . .
coefficient of the function S W with respect to variable S .
X0S

1 {O, for k = m,

d°G(x,s)

If s#/2
OX0s?

el, [0,1] for all X, then based on Bessel’s inequality, we obtain
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3
{ae xs } ds. )

OX0s?

Mg
x
O'—.I—‘

k=1

Using the representation of the function G (X, S), we will show that the right-hand part of the (9)
is bounded. Indeed, we have

0°G(x,s) x> xs*” s*Px*r
!S{ OX0S” } _I {6an£ “B)3-5) (-B)2-B) (2-pY(1-p)

) §2F B N . 1 j}zds+jsﬂ{ PE { §34 B N B
(2-p) (2-5) (3-5)(2-p) o (x5 \(2-5)3-F) (2-p)

_ Swzxw y_ XS 52_ﬁ2+ L Zj}zds_
(2-5)(1-p) (2=B)1=-P)(2-p)" (3-5)(2-5)
X xF 1

= — < .
1-8 1-8 1-8

+00 2
From the last, we can conclude that series Z{[V'(X)] / ik} converges uniformly.
k=1

Since, the function GGéX, S) is continuous, from the equation (6), we get
X
1 0°G
X,S
xPvy (x) = ﬂijﬁ#vk (s)ds (10)
0
or
1
LBy ZG
X"V (x) _Jxﬂa (Z(’S) (s)ds
A 0s
0
2
Hence, considering [xﬂvl’(’(x)/ﬂk] as the Fourier coefficient of the function Xﬂ%,
X

based on Bessel’s inequality, we obtain

420 [xﬁv{(x)]2 1 5 0°G(x,9) i

0

We show that the right-hand part of the last equality is limited:
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[ R

ox?

+j‘£sz_28(1—ﬂ)+(1—ﬂ) 25 5T(A-p) st ]ds=
X (2-p) 2-8  (2-B) (2-p)

¢ X(1-8) 2" +1_1—ﬂ+(1—ﬂ)2_
3 2-8 (2-p)(3-B)4-p) 3 2-8 \2-8
2 L 2= 1 _

(4-PB)2-5) (2-p)(3-B) (2-5)(5-25)
:2x3+1+[1—ﬂj2+ 210-5) . 1 3
3 \2-5) (2-p)(3-5) (2-5)(5-25)

(2ﬂ4—15ﬂ3+43ﬂ2—56ﬂ+28)<1+ 28" 1 435° + 28
(2-8) (3-8)(5-28) (2-8) (3-B)(5-25)

Hence, series i{[xﬁvf(x)}z //?1(2} converges uniformly.

k=1

. . o _ ,0°6(xs) .
Similarly, from equation (5), taking into account the function X W is continuous, we
X
get
By '
[x vk(x)] _jﬁ XﬁazG(x,s) v, (s)ds
LA R —— v _
A 5 OX OX

Hence, on the basis of Bessel’s equality, we have

i[(xw&'(x))'} . I { 2 {Xﬁ M}} ds. (12

k=L ﬂyz ox?
We show that the right hand part of (12) is limited:
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ol oes)] . Hfall. s @t
H&{x T}} dS_!{&KX_Z—ﬂ_ 25 H} ds—ll ds=x<1.

+00 2
Hence it follows that the series Z{[Xﬂvfg(x)] /ﬂf} converges uniformly.
k=1

V. THE ORDER OF THE FOURIER COEFFICIENTS
Lemma 1. Suppose the following conditions hold:

f(x), f'(x)ecC[0,1], x"?f"(x)eL,[0,1], f(1)=f'(1)=f'(0)=0.

Then the following Bessel type equality is valid:

iﬂkff gjxﬁ[f”(x)]zdx. (13)
k=1 0

Particularly, it is possible to assert convergence of the series in (13).
Here in after f, denotes Fourier coefficient of the function f(X) by the system of
eigenfunctions V, (X).

Proof. Let’s consider the functional
1 e
J :Jxﬁ{[f(x)ifkvk( } } dx = Ixﬂ[f” ] dx+Jx{va” } dx —
0 k=1
1 n-1 1 ) n-1 1 )
—ijﬂ f (x){z fkvlf(x)}dx = jxﬂ[ fr(x) ] dx+> sz'[xﬂ [ Ve (x) ] dx +
k=1 k=1 0

+2§:f fjxﬂv" v/(x)dx — 2§:fjxﬂf" X )dx . (14)
k,I1=1
k=l

Integrating by parts twice, we get

x=1

l-xﬂv;’(x)v,"(x)dx = [xﬂvg(x)v;(x) _ [Xﬂvz(x)}' v, (x)} N

x=0

: v L 0 for k=,
+J;[x/’v{(’(x)] vl(x)dx:ﬂk_c[vk(x)v (x)dx:{ﬁvk fz)): kjl. (15)

Similarly integrating by parts, we obtain

x=1

Ixﬂf "(x)v{(x)dx:[xﬂvg(x) f’(X)—[XﬁvL’(x)}' f (x)} N

x=0
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1
+J-[xﬂvz(x)] x)dx = X«J‘ x)dx = 4, f,. (16)
0
By virtue of (15) and (16), from (14) it follows that
jxﬂ[f" ) Jax =Y ﬂkf2>0 for VneN .

From the last inequality, it follows that the fairness of the inequality (14).
Lemma 2. Suppose that the following conditions hold:

f(x), £/(x), X 17(x), [ 1"(x)] ec[o4], [x"1"(x)] eL,[0.],
f(1)=1(0)=f(1)= Ollma( aa;‘;j:o

x—0 OX

Then the following Bessel type equality is valid:

iﬂf f2< j[(xﬂ f ”(x))ﬂde. (17)

Particularly, it is possible to assert convergence of the series in (17).

Proof. By virtue of the conditions of lemma 2 equality (16) is fulfilled. In addition, the following
equality is valid as

ixﬂ f(x)vg (x)dx = ':[[Xﬁ f "(X)]" v, (x)dx. (18)

Indeed, integrating by parts the left hand part of the last equality gives

1 x=1

.([xﬁv,’(’(x) f"(x)dx = {xf’ IMEIACIE [xﬂf ”(x)]rvk (x)}
+i[xﬂ f "(x)]” v, (x)dx.

+

x=0

Taking into account X’ f "(x), [Xﬁf"(x)}, are  continuous on  [0,1],

B&i ”(X)}, =0, v, (0)=0, and also conditions f"(1)= f"(1)=0, we get
B x=0
— , x=1
xﬁf”(x)vlf(x)—[xﬂ fk”(x)] vk(x)} =0.
L x=0

From (16) and (18) it follows that
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1 14
J'[xﬁ f ”(x)] Ve (X)dx =4, f, .
0
Hence, A, f, is the Fourier coefficient of the function Lf E[Xﬁf "(X)T , or
(LF), :[(xﬁf "(x))"} = f. (19)
k

Writing Bessel’s inequality for function [Xﬂ f ”(X)]" and taking equality (19) into account, we
get sought inequality.

V1. JUSTIFICATION OF THE METHOD OF FOURIER

Theorem 1. Suppose that the following conditions hold:

1. ¢(x) satisfies conditions of the lemma 1.
2. f (X,t) satisfies conditions of the lemma 1 uniformly with respect to t

3. ft'(X,t) satisfies conditions of the lemmas 1 and 2 uniformly with respect to variable 1.

Then the following

~+00

u(x,t)=>| ¢ +.:|; (t—z)" [ @(t_z)"qfk(z)dz}vk(x)(ZO)

k=1

series will be regular solution of the problem {(2),(2),(3)} where E, ,(z) is two-parameter
Mittage-Leffler’s function/[] :

+00 Zn
Fs (=2 et )

Proof. We shall seek solution of the considered in the form

u(xt) =T (v, (%) @)

k=1

where V, (X) k e N are functions which are defined by (7), and T, (t) k € N are unknown
functions.

Expanding functions f (X,t) and (p(X) to series by functions V, (X) we get

funzgnmwuym@:zﬂwu) (22)

where

:l f(xt)v (x)dx. o, Ziw(X)Vk(X)dx. (23)
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Substituting (21) and (22) into equation (1) and the condition (2), we obtain

20 DyT (1) v, (X)+ :Zwl:Tk (t)[xﬁvlf(x)]” =n§; f (D)Vi (%),
ng(O)-vk(x):quk v, (x).

From the last equalities, by virtue of (4) and completeness of the system of functions V, (X)

k e N in the space L, (0,1), it follows the following problem with respect to unknown function
T, (t) ;

DOET () + AT () =1 (1), T(0) =9, .

It is known the solution of this problem represented as follows [22]

T, (t) = Ea,l(_/?'kta)(pk + .:[(t - Z)a_l E.. [—ﬂk (t — Z)a} f, (Z)dZ.

Substituting this expression of T, (t) into (21), we obtain formula (20).
Now, we show uniformly convergence of the series
u(xt), U (xt), XU (x,t), [ ¥u, (x1)] , c Du(xt).

Using the rule of integrating by parts we rewrite (20) as follows

u(x.t)= kz E, o (48" o, (x) + kz E, (A7) £, (0)v, (%) +

+Zj-(t - Z)a Ea,a+1[—ﬂk (t— Z)aJ fo(2)dz v, (x). (24)

We show absolute and uniformly convergence of the series in the right hand side of (24).
Since the Mittag-Leffler function is bounded [22], i.e.
E,,(~2)|<M, 0<M <+, 2>0, (25)

one can easily verify that the following inequalities are valid:

+00

k=1

i fk(o)taEa,aﬂ(—ﬂkta)Vk(x)S M -T“{iﬂk fk2(o).+°° vf(x)} |

k=1
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+oot

Zl:!t—z vt A (t=2)" | £(2)dz v, (x) <

M. T 224 ﬁ‘iﬂkfﬂ ivz(x)} |

2a+1| i3 A

We show the validity of the first inequality. Using (25) and Cauchy-Schwarz inequality, we get

S (At % 0] M S v, )=

:M2@¢k.%<

Similarly, one can show validity of the second and third inequalities.

From these inequalities, taking into account lemma 1 and lemma 2, it follows that absolutely and
uniformly convergence of the series of (24) and u(x,t)eC (Q) .

Differentiating (25) with respect to X, we obtain

= E (A7)0 () + 2B (A1) £ (O () +

+oo t

+Zj(t -z)° Ea,aﬂ[—ﬂk (t- Z)a} f.(z)dz v (x). (26)

k=1 o

Analogously, it can be shown that the following inequalities hold:

i Ea,l(_ﬂkta)gpk ‘< M |:Zﬂk¢k iV' } ,

k=1 k=1 k=1

—+00

2

k=1

k=1

e (AN fsu T Sar@ L]

4o T

> [(t=2)" | A (t=2)" |/ (2) 2 (x) <

k=1 o

e (S e @e ST

2a+1| i3 k=1

From the last inequalities by virtue of the conditions of Theorem 1, it follows that the absolute and
uniformly convergence of the series in (26).

Now, differentiating (26) with respect to X and multiplying the both sides of the taken equality to
x” | we obtain
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+00 +00

XﬂUXX(X’t):ZEa,l(_ﬂkta)(kaﬁV:(x)‘Fz aa+1( -4t ) ( )xﬁvlf(x)+
+§j(t—z)“ Ea,aﬂ[—ﬂk(t—z)qfk’(Z)dz-xﬂv;’(x).(zn

We show the convergence of the series in (27). Firstly, we show that the following inequalities are
valid:

+o0 _m Db 5 U2
2 [E.a (AL Yo (x)] <M zwz%} ,

+o0 +o0 1o | Py 27"
2 [Eea (<AL )t £ (0)X"v (x)| < M -T{Zﬂf ff(@-Z%i ,
i't[ t—z)" M+1[ A (t-2)" }fk'(z)dz-xﬂvg(x)s

-|-2a+1 T 4o ’2 +00 XZﬁVKZ X vz
SR e CEOR ol

Let’s prove the first inequality. Taking into account (25), we get

+00

vy (X)
|

Applying Cauchy-Schwarz inequality from the last, we obtain proof of the first inequality. The
second and third inequalities are proved similarly.

AP -

anl(—ﬂkt“)gokxﬁv{(’(x)‘ <M g‘gokxﬂv{(’(x)‘ =M :Zj

Using the same method one can prove absolute and uniformly convergence of the series in
[xﬂuxx(x,t)]x.

Now, we investigate Dg;u(x,t). Applying differential operator . Dy, to the both sides of (24)
and taking into account . Dj;T, (t) =—4T, (t) and also the view of the function T, (t), we find

(D5 (08) =2 AE (A Yo ()~ 4B (“AL) 1 (O (1) -
—:Zjﬂkj;(t—z)“ E, .o 4 (t=2) |1/ (2)dz v, (x)

And convergence of the series in D{;u(x,t) follows by the following inequalities
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Sle (A (cfem| S

f A (—AL ) E (0)y, (x)| < MT* { 3 2212(0) Zw: Vf(x)} |

t

S 1A J(t=2) By A (t-2) |8 (2)dz v, (x)

k=1 0

om0 Hi/ﬁ’ f( dz-i%} .

200 +1| 24 k=1

These inequalities are proved the same method as above-proved inequalities. From these
inequalities, it follows the absolute and uniform convergence of the series in . Dg;u(x,t).
Theorem 1 has been proved.

VII. THE UNIQUENESS OF THE SOLUTION OF THE PROBLEM

Now, we prove the uniqueness of the solution of the problem. For this aim, we introduce the
following function

Ju xt dx (28)

Based on (27), we consider the following auxiliary function

1-¢

To. ()= [u(x )y (x)dx, 29)

&

where ¢ is sufficiently small positive number.

Applying differential operator . Dy, to (29) and using homogeneous equation corresponding
equation (1), we get

l-¢

< DoiT . (1) :—_[ [xﬂuxx(x,t)]XX -V (x)dx.

&

Using the rule of integration by parts four times from the last equality, we get
c DgiTk,g (t) = _{Vk (X)[Xﬂuxx (X’t)]x _Vl: (X)Xﬂuxx (X’t) T XﬂVI:’(X)ux (X’t) B
—[xﬁvlf(x)]lu(x,t)}

Passing to the limit as & — 0 and taking (4) and (28) into account, from (30), we derive

¢ D5Ti (1) + AT (1) =0. (D)

x=l-& l-g

) I [ (%)] u(x,t)dx. 30

X=¢&
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From (28), we have

1

T, (0)=[u(x.0)v, (x)dx =g, . (32)

0

It is known that, the solution of the equation (31) satisfying condition (32) is represented as
follows

T (t) =& Ea,l(_ﬂkta) :

Let go(x) =0, xe [O,I]. Then from the last equality taking into account (28) for all t [O,T]
and k € N it follows that

1

Iu(x,t)vk(x)dx:o.(ss)

0

As since problem {(4),(5)} is self-adjoint, its eigenfunctions will be complete system in L, [O,I] .
Taking this account from (33), we get u(x,t) =0 almost everywhere on [O,I] forall t e [O,T].
By virtue of u(X,t)e C(S_)), we obtain U(X,t)=0 in Q. Thus, homogeneous problem has
only trivial solution and this gives us the uniqueness of the solution of the considered problem.
CONCLUSION

In the present paper, we consider an initial-boundary value problem for a fourth-order, time-
fractional, space-degenerate partial differential equation in a rectangular domain. By applying the
method of separation of variables, we obtain a spectral problem for an ordinary differential
equation. Since this equation has a degenerate coefficient, we cannot find the eigenvalues and
eigenfunctions of this spectral problem in explicit form. However, by applying the theory of
integral equations with symmetric kernels, we establish the existence and some properties of the
eigenvalues and eigenfunctions of this spectral problem. Using these properties, we prove the
existence and uniqueness of the main problem.
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