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Abstract: In a number of applied problems [6]-[8] the points of the simplex are considered as 

states of some biological (physical, economic, etc.) system. The transition from one state to 

another is specified by an evolutionary operator, which can be a differential equation (with or 

without memory) or a difference equation. Depending on the parameters, the evolution of the 

system can occur only on some hyperplane intersecting the simplex [1]. In this case, the problem 

of determining the type of the resulting polyhedron arises.  
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1. Introduction 

Let Rm given n point x1, x2, ..., xn and 

 

the convex hull of these points. If f is a non-zero linear functional, then the hyperplane  

H0 = {x : f (x) = d} separates the points x and y under the condition (f (x) − d)(f (y) − d) < 0. 

Definition 1. Points x1, x2, ..., xn are convexly independent if none of them belongs to the convex 

hull of the others. 

Thus, if x1, x2, ..., xn are convexly independent, then any of them can be separated from the others. 

Obviously, the converse is also true, i.e. if any point can be separated from the others, then these 

points are convexly independent. 

2. Main Part 

Let F be a convex polyhedron in Rm, H0 = {x : f (x) = d}, H+ = {x : f (x) > d} H− = {x : f (x) < d}. 

Then F ∩ H0 is called the section of F by the hyperplane H0. Let F+ = F ∩ H+ и F− = F ∩ H−. 

Theorem 1. If F is a convex polyhedron, then F+ and F− are connected (or empty) sets. 

Since the intersection of convex sets is convex, the proof follows directly from the definitions. 

Corollary 1. Let x1, x2, ..., xn vertices of a convex polyhedron F. Then any vertex can be separated 

from the other vertices by some hyperplane. 

https://semantjournals.org/index.php/AJBP
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Indeed, the vertices of a convex polyhedron are convexly independent. 

Remark 1. It is clear that two vertices of a square that are the ends of a diagonal cannot be 

separated from the other two vertices. 

Definition 2. Points x1, x2, ..., xn are in general position if the vectors x2 − x1, x3 − x1,...,xn − x1 

linearly independent. 

Convex hull of points x1, x2, ..., xn located in general position is called an n 1-dimensional 

simplex, and the points x1, x2, ..., xn vertices of the simplex. From the definition it is clear that the 

vertices of the simplex are convexly independent. 

Let x1, x2, ..., xn vertices of the simplex. Then the convex hull of any k vertices is called k − 1− 

dimensional face. 

Theorem 2. If any two vertices of a convex polyhedron F can be separated from the other vertices, 

then all vertices of F are in general position. 

Proof. If some two-dimensional face F contains more than three vertices, then there exists a pair 

of vertices not connected by an edge. In this case, they cannot be separated from the other 

vertices, since they themselves form a disconnected set. It is clear that a two-dimensional face F 

cannot contain less than three vertices, and these three vertices are in general position. Without 

loss of generality, assume that a convex polyhedron F ⊂ Rm has a dimension m и x1, x2, ..., xn its 

peaks. Clearly n ≥ m + 1. Let us assume that n > m + 1. Then the vectors x2 x1, x3 x1,...,xn x1 

linearly dependent, since their number exceeds m. 

Since dimF = m, then from the vertices x1, x2, ..., xn you can choose m + 1 piece, let's say, x1, x2, 

..., xm+1 so that they are in a common position. Let Fm = co x1, x2, ..., xm+1 . So, n > m + 1, then xm+2 

/ Fm. 

Let's consider straight lines x1xm+2, x2xm+2, ..., xm+1xm+2. According to M. Pasha's axiom, at least 

one of these lines contains a point belonging to Fm and different from the points x1, x2, ..., xm+1. 

If such a straight line is xixm+2, then the segment connecting the points xi andxm+2 cannot be an 

edge for F , since the intersection of any two edges of a convex polyhedron is either empty or one 

of the vertices. Therefore, the vertices xi и xm+2 cannot be separated from other vertices F . 

Corollary 2. Among all convex polyhedra, only the simplex can have any two vertices separated 

from the other vertices. 

Corollary 3. In a simplex, any number of vertices can be separated from the rest. 

Proof. Let x1, x2, ..., xm+1 vertices of the simplex and 1 < k < m + 1. 

Let's consider the faces of the simplex K1 = co{x1, x2, ..., xk} and K2 = co{xk+1, xk+2, ..., xm+1} 

It is easy to see that K1 and K2 non-intersecting convex compact sets. Therefore, they can be 

separated by some hyperplane. 

Definition 3. Two convex polyhedra F1 and F2 dimensions m in space Rm affinely homeomorphic 

if there exists a non-singular matrix A and a vector y ∈ Rm such that the mapping Ax + y 

translates F1 to F2 

It is known [2]-[4] that under an affine transformation, parallel lines become parallel and 

intersecting lines become intersecting, and also 
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on plane R2 any two triangles are affine homeomorphic. The proof of the last statement can easily 

be extended to the case of arbitrary dimension, namely, any two simplexes of the same dimension 

are affine homeomorphic, since the vertices of the simplex are in general position. 

Theorem 3. Any hyperplane separating one of the vertices of the simplex from the others in a 

section with the simplex forms a simplex whose dimension is 1 less than the dimension of the 

original simplex. 

Proof. Let x1, x2, ..., xm+1 vertices of the simplex and a hyperplane separates the vertex x1 from the 

others. Then the vertices x1 and xk где k = 2, 3, ..., m + 1 are located in different open half-spaces 

defined by the hyperplane. Therefore, there are numbers 0 < tk < 1 such that tkx1 + (1 -tk)xk belong 

to the hyperplane for all k = 2, 3, ..., m + 1. 

Since vectors x2 x1, ..., xm+1 x1 are linearly independent, then the vectors y2 x1, y3 x1, ..., 

ym+1 x1, where yk = tkx1 + (1-tk)xk (k = 2, 3, ..., m + 1) are also linearly independent, otherwise 

the original system x2 x1, ..., xm+1 x1 would be linearly dependent. Therefore, x1, y2, ..., ym+1 are 

the vertices of a simplex, and the section is the face of this simplex stretched across the vertices 

y2, ..., ym+1. Thus, the section is a simplex of dimension m − 1. 

Corollary 4. Any two sections of an m-dimensional simplex by hyperplanes separating one of the 

vertices of an affine are homeomorphic. 

Example. Let x1, x2, x3, x4 vertices of a three-dimensional simplex. It is clear that any plane 

separating two vertices from two others in a section defines a quadrilateral. However, two 

quadrilaterals on a plane are not necessarily affinely homeomorphic, for example, a square and a 

trapezoid are not. 

Definition 4. A graph is called bipartite if the set of its vertices can be divided into two non-empty 

and disjoint classes so that the vertices of any arc of this graph belong to different classes. 

Example. Let the vertices of a cube be marked with numbers 1, 2, ..., 8 and the plane separates 

vertices 1, 2, 6 from the remaining vertices. 

In this case, we obtain the following bipartite graph Fig. 2. 

In Fig. 2. only those edges of the cube whose ends lie in different half-spaces defined by the 

cutting plane are preserved. It is clear that the bipartite graph corresponding to the section of the 

cube cannot contain more than six arcs, since the section of the cube is a polygon with no more 

than six sides. It is also obvious that the vertices of the cube 1 and 3 (Fig. 1.) cannot be separated 

from other vertices. 

Thus, the section of a convex m-dimensional polyhedron by a hyperplane that does not contain the 

vertices of the polyhedron determines a certain bipartite graph. Note that the converse, generally 

speaking, is not true. 
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Definition 5. A bipartite graph is called complete if any two vertices belonging to different classes 

are connected by an arc. 

Theorem 4. An arbitrary complete bipartite graph uniquely determines a section of a simplex by a 

hyperplane that does not contain a vertex of this simplex. 

Proof. Let 1, 2, 3, ..., m + 1 be the vertices of a bipartite graph G, where vertices 1, 2, 3, ..., k 

belong to class I, and the remaining vertices belong to class , where . We also denote the vertices 

of the dimensional simplex by the numbers 1, 2, 3, ..., m + 1. It is clear that the face of the simplex 

with vertices 1 and k + 1, k + 2, ..., m + 1 is also a simplex of dimension m k + 1, where vertex 1 

is separated from vertices of class II. According to Corollary 2 and Theorem 3, there exists a 

hyperplane H0, which in intersection with this face defines a simplex of dimension m k. Let this 

intersection be 1. Similarly, we define 2, 3, ..., k . Obviously, these simplices do not contain 

vertices 1, 2, 3, ..., m + 1. Therefore, any two simplices 1, 2, ..., k do not intersect, since their 

intersection could belong only to the face containing all vertices from class II. Then at least one 

vertex of the intersection would belong to the convex hull of class II. 

Corollary 5. The section of the simplex by the hyperplane separating k vertices from the rest is the 

convex hull of k disjoint simplices of dimension m − k. 

Definition 6. Let F be a convex m− dimensional polyhedron. The set of numbers (t0, t1, ..., tm−1), 

where ti the number i of dimensional faces of F will be called the type of this polyhedron Example: 

Let x1, x2, x3, x4, x5 vertices of a four-dimensional simplex. If the hyperplane defines two of them 

from the remaining vertices, then we obtain the following bipartite graph 

Since the vertices of the edge x1x3 belong to different classes, then the edge x1x3 contains one of 

the vertices of the section. Since there are 6 such edges, the section has 6 vertices. It is clear that 

the face x1x2x3 defines the edge of the section. Obviously, there are 9 such two-dimensional faces. 

Therefore, the section has 9 edges. Further, the faces x1x3x4x5 and x2x3x4x5 defines one two-

dimensional face of the section. In these cases, two-dimensional 
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the faces of the section are triangles. The faces x1x2x3x4 , x1x2x3x5, x1x2x4x5 also defines sections by 

one two-dimensional face, which are quadrangles. Thus, the section has 5 two-dimensional faces, 

of which two are triangles and three are quadrangles. 

Under the conditions of the example, the section has the following form Fig. 4. 

Thus, the section has the type (6; 9; 5), and each quadrangle is located on the same plane. Simple 

combinatorial calculations [5] allow us to move on to the general case. 
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