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Classification of Simplex Sections Defined by a Hyperplane
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Abstract: In a number of applied problems [6]-[8] the points of the simplex are considered as
states of some biological (physical, economic, etc.) system. The transition from one state to
another is specified by an evolutionary operator, which can be a differential equation (with or
without memory) or a difference equation. Depending on the parameters, the evolution of the
system can occur only on some hyperplane intersecting the simplex [1]. In this case, the problem
of determining the type of the resulting polyhedron arises.
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1. Introduction
Let R™ given n point X1, X2, ..., Xn and

T T
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the convex hull of these points. If f is a non-zero linear functional, then the hyperplane
Ho = {x : f (x) = d} separates the points x and y under the condition (f (x) — d)(f (y) —d) <O.

Definition 1. Points X1, X2, ..., Xn are convexly independent if none of them belongs to the convex
hull of the others.

Thus, if x1, X2, ..., Xn are convexly independent, then any of them can be separated from the others.
Obviously, the converse is also true, i.e. if any point can be separated from the others, then these
points are convexly independent.

2. Main Part

Let F be a convex polyhedron in R™, Ho={x: f (x) =d}, H: = {x: f (x) > d} H- = {x: f (x) < d}.
Then F N Ho is called the section of F by the hyperplane Ho. Let F+ =FNH+:uF-=F N H-.

Theorem 1. If F is a convex polyhedron, then F+ and F— are connected (or empty) sets.
Since the intersection of convex sets is convex, the proof follows directly from the definitions.

Corollary 1. Let x1, X2, ..., Xn Vertices of a convex polyhedron F. Then any vertex can be separated
from the other vertices by some hyperplane.
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Indeed, the vertices of a convex polyhedron are convexly independent.

Remark 1. It is clear that two vertices of a square that are the ends of a diagonal cannot be
separated from the other two vertices.

Definition 2. Points X1, X2, ..., Xn are in general position if the vectors x» — X1, X3 — X,...,Xn — X1
linearly independent.

Convex hull of points xi, X2, ..., Xa located in general position is called an n 1-dimensional
simplex, and the points xi, X2, ..., Xn Vertices of the simplex. From the definition it is clear that the
vertices of the simplex are convexly independent.

Let X1, X2, ..., Xn Vertices of the simplex. Then the convex hull of any k vertices is called k — 1—
dimensional face.

Theorem 2. If any two vertices of a convex polyhedron F can be separated from the other vertices,
then all vertices of F are in general position.

Proof. If some two-dimensional face F contains more than three vertices, then there exists a pair
of vertices not connected by an edge. In this case, they cannot be separated from the other
vertices, since they themselves form a disconnected set. It is clear that a two-dimensional face F
cannot contain less than three vertices, and these three vertices are in general position. Without
loss of generality, assume that a convex polyhedron F ¢ R™ has a dimension m u X1, X2, ..., Xn itS
peaks. Clearly n > m + 1. Let us assume that n > m + 1. Then the vectors X2 X1, X3 X1,...,Xn X1
linearly dependent, since their number exceeds m.

Since dimF = m, then from the vertices X1, X2, ..., Xa YOU can choose m + 1 piece, let's say, X1, X2,
..., Xm+1 SO that they are in a common position. Let Fm = €O X1, X2, ..., Xm+1 . SO, N >m + 1, then Xm+2
/ Fm.

Let's consider straight lines XiXm+2, X2Xm+2, ..., Xm+1Xm+2. According to M. Pasha's axiom, at least
one of these lines contains a point belonging to Fm and different from the points xi, X2, ..., Xm+1.

If such a straight line is xixm+2, then the segment connecting the points x; andxm+2 cannot be an
edge for F, since the intersection of any two edges of a convex polyhedron is either empty or one
of the vertices. Therefore, the vertices x; u Xm+2 cannot be separated from other vertices F .

Corollary 2. Among all convex polyhedra, only the simplex can have any two vertices separated
from the other vertices.

Corollary 3. In a simplex, any number of vertices can be separated from the rest.
Proof. Let X1, X2, ..., Xm+1 Vertices of the simplexand 1 <k <m + 1.
Let's consider the faces of the simplex K1 = co{xs, X, ..., Xk} and Kz = co{Xk+1, Xk+2, ..., Xm+1}

It is easy to see that K1 and Kz non-intersecting convex compact sets. Therefore, they can be
separated by some hyperplane.

Definition 3. Two convex polyhedra F1 and F2 dimensions m in space R™ affinely homeomorphic
if there exists a non-singular matrix A and a vector y € R™ such that the mapping Ax + y
translates F1 to F

It is known [2]-[4] that under an affine transformation, parallel lines become parallel and
intersecting lines become intersecting, and also
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on plane R? any two triangles are affine homeomorphic. The proof of the last statement can easily
be extended to the case of arbitrary dimension, namely, any two simplexes of the same dimension
are affine homeomorphic, since the vertices of the simplex are in general position.

Theorem 3. Any hyperplane separating one of the vertices of the simplex from the others in a
section with the simplex forms a simplex whose dimension is 1 less than the dimension of the
original simplex.

Proof. Let X1, X, ..., Xm+1 Vertices of the simplex and a hyperplane separates the vertex x1 from the
others. Then the vertices x; and xk rae k = 2, 3, ..., m + 1 are located in different open half-spaces
defined by the hyperplane. Therefore, there are numbers 0 < tx < 1 such that tkx1 + (1 -tk)xk belong
to the hyperplane forall k=2, 3, ..., m + 1.

Since vectors X, X1, ..., Xm#1 X1 are linearly independent, then the vectors y2 X1, yaX1, ...,
Yme1 X1, Where yk = txs + (L-t)xe (k = 2, 3, ..., m + 1) are also linearly independent, otherwise
the original system X2 X1, ..., Xm+1 X1 would be linearly dependent. Therefore, x1, y2, ..., ym+1 are
the vertices of a simplex, and the section is the face of this simplex stretched across the vertices
Y2, ..., Ym+1. Thus, the section is a simplex of dimension m — 1.

Corollary 4. Any two sections of an m-dimensional simplex by hyperplanes separating one of the
vertices of an affine are homeomorphic.

Example. Let x1, X2, X3, X4 vertices of a three-dimensional simplex. It is clear that any plane
separating two vertices from two others in a section defines a quadrilateral. However, two
quadrilaterals on a plane are not necessarily affinely homeomorphic, for example, a square and a
trapezoid are not.

Definition 4. A graph is called bipartite if the set of its vertices can be divided into two non-empty
and disjoint classes so that the vertices of any arc of this graph belong to different classes.

Example. Let the vertices of a cube be marked with numbers 1, 2, ..., 8 and the plane separates
vertices 1, 2, 6 from the remaining vertices.

In this case, we obtain the following bipartite graph Fig. 2.

In Fig. 2. only those edges of the cube whose ends lie in different half-spaces defined by the
cutting plane are preserved. It is clear that the bipartite graph corresponding to the section of the
cube cannot contain more than six arcs, since the section of the cube is a polygon with no more
than six sides. It is also obvious that the vertices of the cube 1 and 3 (Fig. 1.) cannot be separated
from other vertices.

Thus, the section of a convex m-dimensional polyhedron by a hyperplane that does not contain the
vertices of the polyhedron determines a certain bipartite graph. Note that the converse, generally
speaking, is not true.

American Journal of Education and Evaluation Studies 27



( American Journal of Education and Evaluation Studies)

Definition 5. A bipartite graph is called complete if any two vertices belonging to different classes
are connected by an arc.

Theorem 4. An arbitrary complete bipartite graph uniquely determines a section of a simplex by a
hyperplane that does not contain a vertex of this simplex.

Proof. Let 1, 2, 3, ..., m + 1 be the vertices of a bipartite graph G, where vertices 1, 2, 3, ..., k
belong to class I, and the remaining vertices belong to class , where . We also denote the vertices
of the dimensional simplex by the numbers 1, 2, 3, ..., m + 1. It is clear that the face of the simplex
with vertices 1and k + 1, k + 2, ..., m + 1 is also a simplex of dimension m k + 1, where vertex 1
is separated from vertices of class Il. According to Corollary 2 and Theorem 3, there exists a
hyperplane HO, which in intersection with this face defines a simplex of dimension m k. Let this
intersection be 1. Similarly, we define 2, 3, ..., k . Obviously, these simplices do not contain
vertices 1, 2, 3, ..., m + 1. Therefore, any two simplices 1, 2, ..., k do not intersect, since their
intersection could belong only to the face containing all vertices from class Il. Then at least one
vertex of the intersection would belong to the convex hull of class II.

Corollary 5. The section of the simplex by the hyperplane separating k vertices from the rest is the
convex hull of k disjoint simplices of dimension m — k.

Definition 6. Let F be a convex m— dimensional polyhedron. The set of numbers (to, ti, ..., tu-1),
where tj the number i of dimensional faces of F will be called the type of this polyhedron Example:
Let X1, X2, X3, X4, X5 vertices of a four-dimensional simplex. If the hyperplane defines two of them
from the remaining vertices, then we obtain the following bipartite graph

Since the vertices of the edge xixs belong to different classes, then the edge xixs contains one of
the vertices of the section. Since there are 6 such edges, the section has 6 vertices. It is clear that
the face xix2x3 defines the edge of the section. Obviously, there are 9 such two-dimensional faces.
Therefore, the section has 9 edges. Further, the faces XixsxsXs and XoXsxsxs defines one two-
dimensional face of the section. In these cases, two-dimensional

Fig. 4.
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the faces of the section are triangles. The faces x1X2XaXa , X1X2X3Xs, X1X2X4Xs also defines sections by
one two-dimensional face, which are quadrangles. Thus, the section has 5 two-dimensional faces,
of which two are triangles and three are quadrangles.

Under the conditions of the example, the section has the following form Fig. 4.

Thus, the section has the type (6; 9; 5), and each quadrangle is located on the same plane. Simple
combinatorial calculations [5] allow us to move on to the general case.
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