American Journal of Technology Advancement Vol.2, No.5 (May, 2025),

E-ISSN: 2997-9382

American Journal of Technology Advancement https://semantjournals.org/index.php/AJTA

Research Article

WBC Detection and Classification using Optimization Deep Learning – A Review

Wasen Mohammed Najem, Nejood Abedyasir Ibadi, Ohood Ali Mohammed

Al-Diwaniya Technical Institute, AL-Furat AL-Awsat, Technical University

Annotation

One of the main components of blood is white blood cells (WBCs). These cells provide protection against organisms that cause infections, such as bacteria, viruses, and fungi. White blood cells come in five different varieties in the human body. Several names for these cells exist, such as neutrophils, eosinophils, basophils, lymphocytes, and monocytes. There are several conditions that might arise from an overly high or insufficient white blood cell count. There are four different White Blood Cell (WBC) classifications in the dataset of 12,500 JPEG photos : Eosinophil, Lymphocyte, Monocyte, and Neutrophil. Each class has more than 3,000 images. By selecting a collection of these images and analyzing the region of interest (ROI), the approximate color of the WBC has been determined. Using clustering algorithms, the obtained color was utilized as a centroid for image segmentation. A new segmented dataset was created by cropping the ROI bounding boxes. The results were gathered and trained using the CNN ResNet 50 model. The dataset was split between test and train sets in an 80:20 ratio. Following 25 epochs, the model's learning rate was 1.0000e-06, its accuracy was 0.9998, its validation accuracy was 0.9654, its validation loss was 0.1378, and its loss was 6.2305e-04. WBCs and specific types can be detected and recognised by the system.

Keywords: White Blood Cells, Image Processing, Machine Learning, CNN ResNet 50, Cell Classification.

This is an open-access article under the CC-BY 4.0 license

1. Introduction

Human blood consists of blood cells and blood tissues, which make up 45% of the volume. The remaining 55% is plasma. Three types of blood cells have been identified: There are three types of blood cells: leukocytes that (white blood cells), erythrocytes (red blood cells), and platelets. White blood cells are divided into two types and occur in a variety of forms. Agranulocytes are composed of lymphocytes and monocytes, while granulocytes include neutrophils, basophils, and eosinophils.

White blood cells, or WBCs, are the immune system's security guards, protecting against bacterial and viral illnesses. A higher quantity of one of these white blood cell types indicates an infection,

inflammation, soreness, or disease state. Each type of white blood cell has a specific defense role. For example, neutrophil cells treat infections and heal wounds, while eosinophils fight disease and combat viruses and germs.

picture processing involves converting a picture to a digital image and extracting important data from it. Image processing normally discusses all images as two-dimensional signals, using standard signal processing methods.

The process of transforming an image into a digital format and applying particular procedures to extract significant information from it is known as image processing. When using some predefined signal processing procedures, the image processing method often treats all images as two-dimensional signals.

A primary stage in various image and video applications is expressed by image segmentation techniques. This importance results from the segmentation technique's ability to identify regions of interest (objects). Greyscale, binary, or color images are the types of images used in the image segmentation process. Techniques for image segmentation include region growing, region shrinking, clustering, boundary detection, and morphological filtering.

Cluster segmentation is a method for achieving pixel-by-pixel image segmentation. This type of segmentation aims to create pixel clusters by assembling pixels with similar attributes. The segmentation by clustering process is carried out in two steps.

Machine learning enables computers to learn and access data automatically, improving user experience. It has made life easier and has developed into a crucial tool in many fields, including robotics, banking, agriculture, optimization, structural health monitoring, etc. It can be used with devices such as cameras to recognize patterns and objects in color images.

2. Literature Review

As a component of the cell classification process, recent research has proposed many techniques for blood cell image detection.Recent studies aim to identify and count three categories of white blood cells employing feature extraction and classification techniques. However, these methods are highly computational and designed for recognising specific cell types, as seen in the table below.

Ref No	Pub. year	Study objectives	Software / Experiment / Theoretical	Conclusions
1	2021	Develop a system for detecting and classifying white blood cell subtypes using image processing and machine learning techniques.	utilize YOLOv3	Extensive experimental study reveals that the suggested work can classify with 90% accuracy and identify white blood cells with 99.2% accuracy.
2	2021	Use object detection techniques to increase the categorisation effectiveness of white blood cells.	the Faster RCNN and Yolov4 based deep transfer learning models	96.25% and 95.75% accuracy percentages, respectively. Yolov4's one- stage model could detect at up to 60 frames per second while maintaining over 95% accuracy.

Table 1. literature Review

3	2005	Explain the concepts and the uses of image processing.	Theoretical study	The foundations of image processing and its uses in a variety of fields are covered in the book.	
4	2001	Create an unsupervised technique for video and picture color-texture segmentation.	the JSEG algorithm	Images with complex colour textures can be effectively segmented using the suggested method.	
5	2000	With an emphasis on applications in medical imaging, namely cardiac image processing and modelling, the article most likely attempts to investigate cutting-edge methods in pattern analysis and computer vision.	Experiment al study	Advanced image processing and pattern recognition methods can greatly enhance the analysis of cardiac images Treatment planning and a better knowledge of heart problems are made possible by automated modelling techniques. AI integration in medical imaging improves the accuracy and effectiveness of diagnosis.	
6	2015	Compare the picture segmentation clustering techniques K-means and Subtractive Clustering.	Experiment al study	The K-means algorithm performs greater than Subtractive Clustering in image segmentation.	
7	2019	Use machine learning techniques to group together white blood cells.	6 different machine learning algorithms	The Multinomial Logistic Regression (MLR) algorithm fared better than the other methods, with an average test completion rate of 95%. The MLR can be used to automatically classify white blood cells.	
8	2008	This study presents a smart device that simulates a human visual examination and distinction between the three types of blood cells.	Experiment al	The suggested approach successfully identifies blood cell types in spite of their unusual sizes, shapes, and orientations, according to testing data. This enables for the creation of a rotational and scale- invariant blood cell identification system that may be used to automate laboratory reporting in a quick, simple, and efficient manner.	
フ	2010	Create a morphologic and	mamematic	The suggested approach	

	1			
		spectral categorisation system for white blood cells.	al morphology -based methods	outperforms conventional techniques in terms of classification accuracy by integrating both spectral and spatial data.
10	2020	Swarm optimisation of deep characteristics can be used to improve the categorisation of white blood cells.	Experiment al study.	The outcomes surpass a number of convolutional network models and rank among the best obtained on these datasets. We anticipate that many additional image classification jobs may benefit from the combination of CNN feature extraction and SESSA feature optimisation.
11	2021	For feature selection and white blood cell categorisation, use an algorithm modelled after a bat.	Applied study	White blood cell classification is successfully accomplished by the suggested algorithm. With an accuracy of 97.69%, the suggested methodology chooses 11 features from a total of 35 features.
12	2020	Swarm optimisation of deep characteristics can be used to improve the categorisation of white blood cells.	Experiment al study. Using SESSA	The outcomes surpass a number of convolutional network models and rank among the best obtained on these datasets. We anticipate that many additional image classification jobs may benefit from the combination of CNN feature extraction and SESSA feature optimisation.
13	2014	The fundamental science and art underlying the PBF are highlighted in this article. In light of different clinical illnesses, it broadens its clinical indications, laboratory uses, and interpretations.	Literature review.	For the haematologist, the PBF is still a crucial diagnostic test. The haematopathologist should guarantee a high-quality smear, a comprehensive examination, and an appropriate interpretation in accordance with the patient's clinical status.

14	1990	To find cerebral haemorrhage in CT scans, use convolutional neural networks.	Applied study	The fundamentals of image processing and its uses are covered in the book.
15	2019	offers a selection of two- dimensional image processing projects and algorithms.	Reference (book)	Advanced image processing techniques are presented in the book.
16	2021	Develop a Conflux LSTMs network for multi-view action recognition.	Experiment al study using a pre- trained VGG19 CNN model	According to experimental results, the northwestern- UCLA and MCAD datasets have increased by 3% and 2%, respectively, as compared to benchmark datasets and state-of-the- art.
17	2019	Create a generative neural network that improves itself to support incremental learning in the classroom.	Experiment al study SIGANN	The suggested network works well for incremental learning. With a median accuracy of 43%, SIGANN can identify new classes concealed in the data and move on with incremental class learning.
18	2019	The purpose of this work is to facilitate the use of convolutional neural networks (CNN) and deep learning algorithms for the detection of cerebral haemorrhage in computed tomography (CT) images.	Applied study	Haemorrhage can be detected with the use of convolutional neural networks. The suggested CNN networks achieve 98% F1 measurement, 97% recall, and 98% accuracy.
19	2017	Using machine learning and feature extraction techniques, examine the effects of a combination of several characteristics on aneurysm rupture rather than concentrating on a single factor at a time, as is commonly done in the literature.	Applied study	This study will be based on publicly accessible health statistics, meteorological data, and clinical and demographic information about patients at the Carlos Van Hospital who have been diagnosed with cerebral aneurysms.
20	2008	Analyze face images using convolutional neural networks.	Theoretical and experimenta l study.	With an error tolerance of 10% of the interocular distance, this method's detection rate is 96% for the AR database and 87% for the BioID database.
21	2021	Create a network of Conflux LSTMs to recognise actions	Experiment al study	According to experimental results, the northwestern-

		in several views.	Using	UCLA and MCAD		
			VGG19	datasets have increased by		
			CNN model	3% and 2%, respectively,		
				as compared to benchmark		
				datasets and state-of-the-		
		Describe the grin sigles of		art.		
22	2019	Describe the principles of	Theoretical	The book covers the		
LL	2018		study	basics. of neural networks		
		learning.		The fundamentals and uses		
		Give an initial explanation of		of convolutional noural		
23	2017	convolutional neural	Theoretical	notworks are covered in		
		networks.		the book		
				The foundations of deep		
				learning in computer		
				vision are covered in the		
		Introduce the key concepts of		book Several real-world		
24	2018	deen learning for computer	Theoretical	case studies from		
21	2010	vision.	Theoretical	computer vision provide		
				an insight into the state-of-		
				the-art in Deep Learning		
				research		
				Neural networks are		
	2018	Explain deep learning and neural network concepts.	Theoretical	examined in this book		
25				from this contemporary		
				angle. The book's chapters		
				are arranged as follows.		
				Neural network		
26	2020	Examine the artificial neural	Literature	performance is greatly		
20	2020	functions.	review	impacted by various		
				activation functions.		
				When it comes to		
		To forecast bridge scour, use	Applied	forecasting bridge scour,		
27	2013	a neural network with an adaptable activation function.	study	the neural network with		
				adaptive activation works		
				well.		
				Adaptive activation		
				functions enhance neural		
				network performance.		
20	0010	Examine convolutional neural	Experiment	Tests show that on		
28	2018	networks' adaptable	al study	benchmarks with different		
		activation functions.		scales, the suggested		
				activation functions		
				variations		
				These tests show how		
		the extension of a car-		CNN generalisation is		
20	2020	2020 the extension of a car- identification convolutional neural network (CNN.(Experiment al study	affected by changes in		
23				narticular camera settings		
				and image processing		

13011 <t< th=""><th></th><th>r</th><th></th><th></th><th></th></t<>		r			
30Image: A constraint of the constraint o					techniques.
30Image: the overfit controlling techniques and divides them into three groups: semi-active, active, and passive.Experiment al studydistinctions between shallow and deep neural networks, offers a thorough analysis of overfitting control techniques, and illuminates current developments in the field. It can be an invaluable resource for machine learning practitioners and researchers.312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Theoretical study.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and beyond the best publishing result on active year and beyond the best publishing result on techniques.362020Build a temporal backpropagation algorithm for neural networks through guardina deprintensities trais for glaucoma and deep learning 1 study.The suggested techniques.372019Examine the relative significance of optic disc trais for glaucoma and deep learning entry or disc trais for glaucoma and deep learning.The suggested techniques.382019Create a dee pleaning-based trais for glaucoma and deep learning.Ap					The paper highlights the
30Image: shallow and deep neural networks, offers a thorough analysis of the overfit controlling techniques and divides them into three groups: semi-active, active, and passive.Experiment al studyshallow and deep neural networks, offers a thorough analysis of overfitting control techniques, and illuminates current developments in the field. It can be an invaluable resource for machine learning practitioners and researchers.312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and experimental study.Theoretical and experimental study.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimental spiking neural networks.Experimental and experimental study.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study. </td <td></td> <td></td> <td></td> <td></td> <td>distinctions between</td>					distinctions between
30Image: hear of the second state of the					shallow and deep neural
30the overfit controlling techniques and divides them into three groups: semi- active, active, and passive.Experiment al studythorough analysis of overfitting control techniques, and illuminates current developments in the field. It can be an invaluable resource for machine learning practitioners and researchers.312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015In order to speed up deep network training, implement batch normalisation.Literature review.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimental 1 study.The suggested techniques.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.The suggested technique works well for identifying works well for identifying works well for identifying <b< td=""><td></td><td></td><td></td><td></td><td>networks, offers a</td></b<>					networks, offers a
30In order to speed up deep network training.Experiment al studycoverfitting control techniques, and illuminates current developments in the field. It can be an invaluable resource for machine learning practitioners and researchers.312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements learning.Literature review.Neural network generalisation is greatly impacted by camera settings.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.In computer vision, deep learning vields encouraging outcomes.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and ad werimenta l study.The suggested tis a powerful way to train spiking neural networks.372019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying works			the eventit controlling		thorough analysis of
30Techniques and divides inemination three groups: semi- active, active, and passive.Experiment al studyExperiment al study312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyIceration (action of the field. It can be an invaluable resource for machine learning practitioners and researchers.322019Talk about the requirements for biological machine learning.Experiment al studyNeural network generalisation is greatly impacted by camera settings.332018Give a succinct overview of computer vision deep learning, implement batch normalisation.Literature review.There ought to be specific recommendations for using machine learning in biology.342015In order to speed up deep network training, implement batch normalisation.Literature review.In computer vision, deep learning vields encouraging outcomes.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical al study.Mite matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through using for algucoma and deep learning experts.Theoretical and astudy.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Theoretical and astudy.382019Create a deep learning-based malware detection technique.Applied study.			the overfit controlling		overfitting control
Into three groups: semi- active, active, and passive.al studycurrent developments in the field. It can be an invaluable resource for machine learning practitioners and researchers.312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015In order to speed up deep network training, implement batch normalisation.Literature review.In computer vision, deep learning vields encouraging outcomes.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.Mite matter hyperintensities can be efforticively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and automatic segmentation at study.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.The suggested technique study.382019Create a deep learning-based malware detection technique.Applied study.	30		techniques and divides them	Experiment	techniques, and illuminates
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studythe field. It can be an invaluable resource for machine learning practitioners and researchers.322019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning vields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: suppass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and at study.The strategy suggested is a powerful way to train spiking neural networks.362020Build a temporal backpropagation algorithm for neural networks through uplaes.Theoretical and at study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning.Ap			into three groups: semi-	al study	current developments in
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyinvaluable resource for machine learning practitioners and researchers.322019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning vields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.In computer vision, deep learning vields encouraging outcomes.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.Batch normalisation, accuracy of human raters and beyond the best publishing result on ImageNet classification, acclieving 4.82% top-5 test error.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimental al study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc trais for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learnin			active, active, and passive.		the field. It can be an
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyMachine learning practitioners and researchers.322019Talk about the requirements for biological machine learning.Literature review.Meural network generalisation is greatly impacted by camera settings.332018Give a succinct overview of computer vision deep learning.Literature review.Theoreught to be specific recommendations for using machine learning in biology.342018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and beyond the best et study.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta and techniques.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Theoretical and experimenta382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works.					invaluable resource for
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015In order to speed up deep network training, implement batch normalisation.Literature review.In computer vision, deep learning outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and experimentaTheoretical and experimenta362020Build a temporal backpropagation algorithm for neural networks through ulses.Theoretical and experimentaThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learni					machine learning
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and study.The strategy suggested is a powerful way to train spiking neural networks.362020Build a temporal backpropagation algorithm for glaucoma and deep learning experts.The suggested technique study.372019Create a deep learning-based malware detection technique.Applied study.Experts in glaucoma can benefit from deep learning.					practitioners and
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyNeural network generalisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and and experimentaTheoretical and experimenta362020Build a temporal backpropagation algorithm for neural networks through ulses.Theoretical and experimentaThe strategy suggested is a powerful way to train spiking neural networks.372019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well or identifying works well for identifying works well for identifying					researchers
312019Examine how camera settings affect the generalisation of neural networks.Experiment al studyCreater allisation is greatly impacted by camera settings.322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and experimenta al study.White matter hyperintensities can be effectively segmented using the suggested is a powerful way to train spiking neural networks.362020Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.The suggested technique works well for identifying works well for identifying works well for identifying372019Create a deep learning-based malwar					Neural network
312019affect the generalisation of neural networks.al studyal studyal study322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation mhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested is a powerful way to train spiking neural networks.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 study.The strategy suggested is a powerful way to train spiking neural networks.372019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for id			Examine how camera settings	Experiment	generalisation is greatly
322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015In order to speed up deep network training, implement batch normalisation.Literature review.In computer vision, deep learning yields encouraging outcomes.342015Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Theoretical and experimenta I study.White matter hyperintensities can be effectively segmented using the suggested itechniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta I studyThe suggested is a powerful way to train spiking neural networks.372019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying	31	2019	affect the generalisation of	al study	impacted by comera
322019Talk about the requirements for biological machine learning.Literature reviewThere ought to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.There ought to be specific recommendations for using machine learning in biology.342015Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Create a deep learning-based malware detection technique.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works wel			neural networks.	ai study	sottings
322019Talk about the requirements for biological machine learning.Literature reviewIntereougint to be specific recommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.Theoretical and experimenta al study.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying mulware					There exact to be encodifie
322019for biological machine learning.Literature reviewrecommendations for using machine learning in biology.332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Literature review.In computer vision, deep learning vields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested is a powerful way to train spiking neural networks.362020Build a temporal backpropagation algorithm for neural networks through publes.Theoretical and experimenta l study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.The suggested technique works well for identifying works well for identifying works well for identifying382019Create a deep learning-based malware detection technique.Applied st		2019	Talk about the requirements for biological machine learning.	Literature review	There ought to be specific
332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Literature review.Batch normalisation enhances deep network 	32				recommendations for using
332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta I studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying works well for identifying					machine learning in
332018Give a succinct overview of computer vision deep learning.Literature review.In computer vision, deep learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying					biology.
332018computer vision deep learning.Image: Theoretical study.learning yields encouraging outcomes.342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested is and experimental 1 study362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimental 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying works well for identifying works well for identifying			Give a succinct overview of	Literature	In computer vision, deep
342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying	33	2018	computer vision deep learning.	review	learning yields
342015In order to speed up deep network training, implement batch normalisation.Theoretical study.Batch normalisation 				10/10/07	encouraging outcomes.
342015In order to speed up deep network training, implement batch normalisation.Theoretical study.enhances deep network performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta l study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware					Batch normalisation
342015In order to speed up deep network training, implement batch normalisation.Theoretical study.performance: surpass the accuracy of human raters and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta l study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			In order to speed up deep network training, implement batch normalisation.	Theoretical study.	enhances deep network
342015In order to speed up deep network training, implement batch normalisation.Theoretical study.accuracy of human raters and beyond the best publishing result on ImageNet classification, 					performance: surpass the
342015network training, implement batch normalisation.Inteoretical study.and beyond the best publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying					accuracy of human raters
35batch normalisation.study.publishing result on ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta l study.The strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying works well for identifying	34	2015			and beyond the best
352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.ImageNet classification, achieving 4.82% top-5 test error.352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware					publishing result on
352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.Analyse white matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware					ImageNet classification,
352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware					achieving 4.82% top-5 test
352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.White matter hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware					error.
352019Analyse white matter hyperintensities using automatic segmentation techniques.Experiment al study.hyperintensities can be effectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware					White matter
352019hyperintensities using automatic segmentation techniques.Experiment al study.offectively segmented using the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			Analyse white matter		hyperintensities can be
362019automatic segmentation techniques.al study.al study.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware	35	2019	hyperintensities using	Experiment	effectively segmented
techniques.asing the suggested techniques.362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware		-017	automatic segmentation	al study.	using the suggested
362020Build a temporal backpropagation algorithm for neural networks through pulses.Theoretical and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			techniques.		techniques
362020Dank a temporal backpropagation algorithm for neural networks through pulses.Incorrection and experimenta 1 studyThe strategy suggested is a powerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			Build a temporal	Theoretical	
362020Succeptoplighton algorithm for neural networks through pulses.and experimenta 1 studypowerful way to train spiking neural networks.372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			hackpropagation algorithm	and	The strategy suggested is a
372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware	36	2020	for neural networks through	experimenta	powerful way to train
372019Examine the relative significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			nulses	l study	spiking neural networks.
372019Significance of optic disc traits for glaucoma and deep learning experts.Applied study.Experts in glaucoma can benefit from deep learning.382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			Fyamine the relative	1 Study	
37 2019 Significance of optic disc Applied Experts in glaucolla call 38 2019 Create a deep learning-based malware detection technique. Applied The suggested technique works well for identifying		2019	significance of optic disc	Applied	Experts in glaucoma can
38 2019 Create a deep learning-based malware detection technique. Applied study. The suggested technique works well for identifying malware	37		significance of optic disc		benefit from deep learning
382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			learning exports	study.	benefit from deep learning.
382019Create a deep learning-based malware detection technique.Applied study.The suggested technique works well for identifying malware			icarining experts.		The suggested technique
malware detection technique. study. works well for identifying	20	2010	Create a deep learning-based	Applied study.	works well for identifying
	30	2019	¹⁹ malware detection technique.		works well for identifying

39	2018	Examine the significance of data augmentation in deep learning-based skin lesion classification.	Experiment al study.	In conclusion, deep learning models perform better when data is supplemented. When compared to training with non-augmented data, the network that uses augmented data has performed better.
40	2012	Examine semi-supervised embedding in deep learning.	Theoretical study.	The performance of deep learning is enhanced by semi-supervised embedding. With competitive error rates when compared to current shallow semi-supervised techniques and deep learning approaches, this offers a straightforward substitute.
41	2017	Create a deep learning approach for optical flow estimates that is unsupervised.	Experiment al study.	In conclusion, the suggested approach works well for estimating optical flow. promising outcomes on the benchmark datasets for KITTI, MPI-Sintel, and Flying Chairs. Our unsupervised approach performs better than its supervised learning-trained equivalent, especially on the KITTI dataset, which has a large number of unlabelled samples.
42	2015	For extensive convolutional neural networks, strengthen the arrangement of FPGA- based acceleration devices.	Applied study.	The proposed approach increases the performance of FPGA-based accelerators
43	2017	Create a convolutional neural network-based facial recognition technique.	Applied study.	The suggested approach works well for facial recognition.
44		Describe how convolutional neural networks use backpropagation.	Theoretical study.	One important technique for convolutional neural network training is backpropagation.
45	2020	presents a sophisticated transfer learning system that dynamically adjusts data distributions to improve model performance when	Experiment al study Using MDDA & DDAN	Numerous tests show that MDDA and DDAN establish a solid baseline against the most recent deep and sophisticated

		knowledge is moved from a		techniques in image	
		source domain to a target		classification sentiment	
		domain		analysis and digit	
		domain.		recognition while also	
				groatly onhanging transfor	
				loarning parformance	
				A brief description of	
		how drug discovery		A brief description of	
		now drug discovery		move learning and its	
		procedures can be made more		current uses in the	
10	2020	accurate and efficient by	Experiment	development of medicines	
46	2020	using transfer learning	al study	is presented in this	
		approaches, especially when	5	Perspective. It also offers	
		there is a lack of or high cost		insights on how transfer	
		for experimental data.		learning for drug discovery	
				will advance in the future.	
				Unlike nontrivial	
		We create a pretrained model		transferability across many	
	2019	library named XenonPy.MDL	Experiment	qualities that transcend the	
47		to enable the broad	al study.	several materials science	
		application of transfer		disciplines, transfer	
		learning.		learning has independently	
				established transferability.	
				The stochastic support	
	2021	We'll show off a hybrid mask-based detection model		vector machine classifier's	
			Experiment	testing accuracy in RMFD	
48				was 99.64%. In LFW, it	
		that mixes deep and routine	arstudy	achieved 100% testing	
		machine learning.		accuracy, and in SMFD,	
				99.49%.	
				This supplies accurate	
		give a thorough examination		guidance for identifying,	
		of the various industrial areas	Applied study.	constructing, or carrying	
40	2020	in which deep transfer		down roots the deep	
49	2020	learning (DTL) techniques		transfer learning	
		are being used for machinery	5	architecture in the field of	
		fault diagnosis (MFD).		machine failure	
				diagnostics.	
		Transfer educational		~~~~~	
		objectives are for improving		evaluating the efficacy	
		target learners' performance	A	among different transfer	
50	2020	on target domains by	Applied	learning models; around	
		spreading insight obtained	study.	20 typical ones are used in	
		from various but related		the research projects.	
		source domains.		I J	
	1	Using frequency-domain gait		In subject discrimination.	
		entropy characteristics and		time-frequency analysis-	
F 1	2015	part-based analysis, this work	Experiment	derived features performed	
51	2015	sought to create a novel gait	al study	better than conventional	
		detection system with an		time-domain features.	
		emphasis on:		Compared to whole-body	

-		-		
				gait identification
				techniques, the accuracy
				was increased by 10-15%.
		This work offers a new image		
	2015	segmentation approach that		attains cutting-edge
52		combines texture analysis and	Experiment	segmentation outcomes in
		boundary compression to	al study	contrast to other current
		improve segmentation of		techniques.
		natural images.		

3. Experimental Model

This part presents the results of the suggested system. 12,500 photos were used to test and train this system. These pictures are a balanced dataset that includes four different WBC classes: neutrophils, monocytes, lymphocytes, and eosinophils. By calculating the percentage of each class in relation to the entire dataset, statistics have been performed to guarantee dataset balance. For certain photos, a histogram has been acquired in order to gain information regarding the colour of the target object. The picture segmentation technique has utilised the target colour as the cluster centroid. To create a fresh image for training solely on object features, the target segment has been clipped. The results of testing the entire suggested methods are listed below.

3.1 Case study

The plotting of several preprocessing picture techniques in order to provide explanations has been incorporated into the suggested method. Following the use of the training and assessment strategies, these techniques are detailed below.

3.1.1 Ensure dataset balancing

Making sure that the dataset is balanced is one of the crucial studies into each dataset. This is significant because it is necessary to calculate the accuracy for each class (per-class accuracy) if the data are not balanced.

Figure (4.1) explain the percent of class according to the dataset.

Figure (3.1) the percentage of each class according to the dataset.

3.1.2 Image Histogram

The image histogram is one of the mathematical examinations of an image that is used to give details about the distribution of colours in the image at that moment. The image is displayed in figure (3.2), the image histogram is explained in figure (3.3), and the blue channel—the colour closest to the target object—is displayed in figure (3.4).

Figure (3.2) Row image from the dataset.

Figure (3.3) The histogram of the previous images.

Figure (3.4) The blue channel of the histogram.

3.1.3 Image segmentation

The picture segmentation procedure has made use of the clustering technique. The blue channel of the histogram has been used to identify the cluster centroid. Figure 3.5 displays the segmented image along with the bounding box enclosing the white blood cell.

Figure (3.5) Image segmentation process by choosing the largest object.

Image cropping process used to extract the segmented area into a new image for the purposes of training. With black background without any features. Figure (3.6) shows the cropping technique.

Figure (3.7) Cropping image.

Figure (3.8) shows the result of resizing the image into 120*120-pixel images.

Preprocessing the images with the previous construct a new training set as shown in figure (3.9)

Figure (3.9) The new training set.

3.1.4 Training

Training and testing sets of 0.80%:0.20% have been utilised to distinguish the data assembling on multiple occasions. Figure 3.10 organises the dataset into training, testing, and validation sets. The model developed the following scores after 25 training epochs. In Figure (3.11), this is exhibited: Learning rate = 1.0000e-06, accuracy = 0.9998, val_accuracy = 0.9654, val_loss = 0.1378, and loss = 6.2305e-04.

Figure (3.10) Spliting the dataset to training set and testing set.

Figure (3.11) shows training and validation accuracy and figure (3.12) training and loss

Figure (3.12) Training and validation loss.

Table (3.1) explain precision, recall, F1-score, support and accuracy.

	Precision	Recall	F1-score	support
EOSINOPHIL (Class 0)	0.95	0.93	0.94	337
LYMPHOCYTE (Class 1)	0.98	1.00	0.99	303
MONOCYTE (Class 2)	0.99	0.98	0.98	286
NEUTROPHIL (Class 3)	0.91	0.92	0.92	289
Accuracy			0.96	1215
macro avg	0.96	0.96	0.96	1215
weighted avg	0.96	0.96	0.96	1215

Figure (3.13) explain the confusion matrix for Resnet50 CNN model.

Figure (3.13) Confusion matrix for Resnet 50 model.

4. Conclusions

Some of the troubles required to be established themselves as well as discussed during the stages of the system that is suggested are as follows:

- 1. Make sure the data set is balanced at this critical point, as the testing set's sampling procedure should have the same percentage. For non-balanced datasets, calculating the accuracy per class is crucial for system testing.
- 2. Using information from the picture a histogram the Region of Interest (RoI) was derived from the row image based on the colour of the region. A centroid for the picture segmentation clustering algorithm has been established using the colour information.
- 3. Because the training process will focus on the key characteristics that are part of the target region in the images, the CNN model trained with ROI is more accurate.

5. References

- N. Praveen, N. S. Punn, S. K. Sonbhadra, S. Agarwal, M. Syafrullah, and K. Adiyarta, "White blood cell subtype detection and classification," Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2021-October, pp. 203–207, 2021, doi: 10.23919/EECSI53397.2021.9624268.
- 2. J. Yao et al., "High-Efficiency Classification of White Blood Cells Based on Object Detection," J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/1615192.
- 3. T. Acharya and A. K. Ray, Image Processing: Principles and Applications. JOHN WILEY & SONS, MC., PUBLICATION, 2005.

- 4. Y. Deng and B. S. Manjunath, "Unsupervised segmentation of color-texture regions in images and video," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 8, pp. 800–810, 2001.
- 5. JS Suri Pattern Analysis & Applications, 2000 Springer Abstract: In the last decade, computer vision, pattern recognition, image processing and cardiac image analysis and modelling.
- 6. N. Dhanachandra, K. Manglem, and Y. J. Chanu, "Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm," Procedia Comput. Sci., vol. 54, pp. 764–771, 2015, doi: 10.1016/j.procs.2015.06.090.
- A. ELEN and M. K. TURAN, "Classifying White Blood Cells Using Machine Learning Algorithms," Uluslararası Muhendis. Arastirma ve Gelistirme Derg., pp. 141–152, 2019, doi: 10.29137/umagd.498372.
- 8. A. Khashman, "Ibcis: Intelligent blood cell identification system," Prog. Nat. Sci. Mater. Int., vol. 18, no. 10, pp. 1309–1314, 2008, doi: 10.1016/j.pnsc.2008.03.026.
- 9. Q. Wang, L. Chang, M. Zhou, Q. Li, H. Liu, and F. Guo, "A spectral and morphologic method for white blood cell classification," Opt. Laser Technol., vol. 84, pp. 144–148, 2016, doi: 10.1016/j.optlastec.2016.05.013.
- A. T. Sahlol, P. Kollmannsberger, and A. A. Ewees, "Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features," Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-59215-9.
- 11. Deepak Gupta, Utkarsh Agrawal, Jatin Arora, and Ashish Khanna, "Bat-inspired algorithm for feature selection and white blood cell classification ", Maharaja Agrasen Institute of Technology, Delhi, India, Nature-Inspired Computation and Swarm Intelligence, Elsevier-May 2020.
- A. T. Sahlol, P. Kollmannsberger, and A. A. Ewees, "Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features," Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-59215-9.
- 13. Adewoyin, A. Peripheral blood film-a review. Ann. Ib. Postgrad. Med. 2014, 12, 71–79.
- 14. C. Vision, Digital image processing and computer vision, vol. 49, no. 1. 1990.
- 15. V. Kovalevsky, Modern Algorithms for Image Processing. Library of Congress, 2019.
- 16. Ullah, A.; Muhammad, K.; Hussain, T.; Baik, S.W. Conflux LSTMs network: A novel approach for multi-view action recognition. Neurocomputing 2021, 435, 321–329.
- 17. Mellado, D.; Saavedra, C.; Chabert, S.; Torres, R.; Salas, R. Self-improving generative artificial neural network for pseudorehearsal incremental class learning. Algorithms 2019, 12, 206.
- 18. Castro, J.S.; Chabert, S.; Saavedra, C.; Salas, R.F. Convolutional neural networks for detection intracranial hemorrhage in CT images. CRoNe 2019, 2564, 37–43.
- 19. Chabert, S.; Mardones, T.; Riveros, R.; Godoy, M.; Veloz, A.; Salas, R.; Cox, P. Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Res. Ideas Outcomes 2017, 3, e11731.
- 20. Stefan Duffner and Prof. Dr. Hans Burkhardt, Face Image Analysis with Convolutional Neural Networks, doctoral diss., Albert-Ludwigs-University Freiburg im Breisgau, 2008.
- 21. Ullah, A.; Muhammad, K.; Hussain, T.; Baik, S.W. Conflux LSTMs network: A novel

approach for multi-view action recognition. Neurocomputing 2021, 435, 321–329.

- 22. Michael Nielsen, Neural Networks and Deep Learning. The original onlinebook can be found at http://neuralnetworksanddeeplearning.com, 2018.
- 23. Hamed Habibi Aghdam and Elnaz Jahani Heravi. Guide to Convolutional Neural Networks. Cincinnati: Spain, University Rovira i Virgili, Springer, 2017.
- 24. Dr. Stephen Moore, Deep Learning for Computer Vision. Cincinnati: Birmingham, January 2018.
- 25. Charu C. Aggarwal, Neural Networks and Deep Learning. Cincinnati: USA, Springer, 2018.
- 26. A. D. Rasamoelina, F. Adjailia, and P. Sincak, "A Review of Activation Function for Artificial Neural Network," *SAMI 2020 IEEE 18th World Symp. Appl. Mach. Intell. Informatics, Proc.*, pp. 281–286, 2020, doi: 10.1109/SAMI48414.2020.9108717.
- 27. A. Ismail, D. S. Jeng, L. L. Zhang, and J. S. Zhang, "Predictions of bridge scour: Application of a feed-forward neural network with an adaptive activation function," *Eng. Appl. Artif. Intell.*, vol. 26, no. 5–6, pp. 1540–1549, 2013, doi: 10.1016/j.engappai.2012.12.011.
- 28. S. Qian, H. Liu, C. Liu, S. Wu, and H. S. Wong, "Adaptive activation functions in convolutional neural networks," *Neurocomputing*, vol. 272, pp. 204–212, 2018, doi: 10.1016/j.neucom.2017.06.070.
- 29. Z. Liu, T. Lian, J. Farrell, and B. A. Wandell, "Neural Network Generalization: The Impact of Camera Parameters," *IEEE Access*, vol. 8, pp. 10443–10454, 2020, doi: 10.1109/ACCESS.2020.2965089.
- 30. M. M. Bejani and M. Ghatee, A systematic review on overfitting control in shallow and deep neural networks, vol. 54, no. 8. Springer Netherlands, 2021.
- 31. S. H. Khan, M. Hayat, and F. Porikli, "Regularization of deep neural networks with spectral dropout," *Neural Networks*, vol. 110, pp. 82–90, 2019, doi: 10.1016/j.neunet.2018.09.009.
- 32. D. T. Jones, "Setting the standards for machine learning in biology," *Nat. Rev. Mol. Cell Biol.*, vol. 20, no. 11, pp. 659–660, 2019, doi: 10.1038/s41580-019-0176-5.
- A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep Learning for Computer Vision: A Brief Review," Comput. Intell. Neurosci., vol. 2018, 2018, doi: 10.1155/2018/7068349.
- 34. Sergey Ioffe, Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", *arxiv*, 2 Mar. 2015.
- 35. H. J. Kuijf *et al.*, "Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge," *IEEE Trans. Med. Imaging*, vol. 38, no. 11, pp. 2556–2568, 2019, doi: 10.1109/TMI.2019.2905770.
- 36. S. R. Kheradpisheh and T. Masquelier, "Temporal Backpropagation for Spiking Neural Networks with One Spike per Neuron," *Int. J. Neural Syst.*, vol. 30, no. 6, 2020, doi: 10.1142/S0129065720500276.
- S. Phene *et al.*, "Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs," *Ophthalmology*, vol. 126, no. 12, pp. 1627–1639, 2019, doi: 10.1016/j.ophtha.2019.07.024.
- Y. Saint Yen and H. M. Sun, "An Android mutation malware detection based on deep learning using visualization of importance from codes," *Microelectron. Reliab.*, vol. 93, no. October 2018, pp. 109–114, 2019, doi: 10.1016/j.microrel.2019.01.007.

- 39. E. Ayan and H. M. Unver, "data augmentation importance for classification of skin lesions via deep learning," *IEEE*, 2018.
- 40. J. Weston, F. Ratle, H. Mobahi, and R. Collobert, "Deep Learning via Semi-supervised Embedding Jason," *Springer*, p. 14, 2012.
- 41. Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, "Unsupervised deep learning for optical flow estimation," *31st AAAI Conf. Artif. Intell. AAAI 2017*, no. Hollingworth 2004, pp. 1495–1501, 2017.
- Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong, "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks", FPGA '15 Proceedings of the 2015 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Monterey, California, USA, PP 161-170, Feb. 2015.
- 43. Musab Coşkun, Ayşegül Uçar, Özal Yıldırım, Yakup Demir, "Face recognition based on convolutional neural network", in *International Conference on Modern Electrical and Energy Systems (MEES)*, 15-17 November 2017. Kremenchuk, Ukraine: IEEE, 8 January 2018.
- 44. Jefkine, "Backpropagation in Convolutional Neural Networks", 5 September 2016.
- 45. J. Wang, Y. Chen, W. Feng, Y. U. Han, M. Huang, and Q. Yang, "Transfer learning with dynamic distribution adaptation," *ACM Trans. Intell. Syst. Technol.*, vol. 11, no. 1, 2020, doi: 10.1145/3360309.
- 46. C. Cai *et al.*, "Transfer Learning for Drug Discovery," *J. Med. Chem.*, vol. 63, no. 16, pp. 8683–8694, 2020, doi: 10.1021/acs.jmedchem.9b02147.
- H. Yamada *et al.*, "Predicting Materials Properties with Little Data Using Shotgun Transfer Learning," ACS Cent. Sci., vol. 5, no. 10, pp. 1717–1730, 2019, doi: 10.1021/acscentsci.9b00804.
- 48. M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, "A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic," *Meas. J. Int. Meas. Confed.*, vol. 167, p. 108288, 2021, doi: 10.1016/j.measurement.2020.108288.
- C. Li, S. Zhang, Y. Qin, and E. Estupinan, "A systematic review of deep transfer learning for machinery fault diagnosis," *Neurocomputing*, vol. 407, pp. 121–135, 2020, doi: 10.1016/j.neucom.2020.04.045.
- 50. F. Zhuang *et al.*, "A Comprehensive Survey on Transfer Learning," *Proc. IEEE*, vol. 109, no. 1, pp. 43–76, 2021, doi: 10.1109/JPROC.2020.3004555.
- M. Rokanujjaman, M. S. Islam, M. A. Hossain, M. R. Islam, Y. Makihara, and Y. Yagi, "Effective part-based gait identification using frequency-domain gait entropy features," Multimed. Tools Appl., vol. 74, no. 9, pp. 3099–3120, 2015.
- 52. H. Mobahi, S. R. Rao, A. Y. Yang, S. S. Sastry, and Y. Ma, "Segmentation of natural images by texture and boundary compression," *Int. J. Comput. Vis.*, vol. 95, no. 1, pp. 86–98, 2011, doi: 10.1007/s11263-011-0444-0.