
American Journal of Technology Advancement Vol.2, No.7 (July, 2025),

83

 E-ISSN: 2997-9382

 American Journal of Technology Advancement

 https://semantjournals.org/index.php/AJTA

| Research Article

Critical Evaluations of Path Planning Algorithms: A Comprehensive

Review

Abbas Nadhim Kadhim, Muhammed Sabri Salim

Department of Electronics and Communication Engineering, Al-Nahrain University, Baghdad-

Iraq

Annotation

Over the past few years, there has been a significant amount of interest in the research of path

planning strategies, particularly in situations that remained static. This is because it is pertinent to

the operations of mobile robots that are successful and autonomous. The reason for this is that it

is relevant. The purpose of this study is to investigate and evaluate the algorithms and

methodologies that are currently being utilized for the purpose of path planning in static settings.

This study was specifically constructed for the purpose of achieving this goal. Graph-based

algorithms and sampling-based algorithms are the two kinds that will be the focus of our

subsequent discussion in this section. Both of these categories are subjected to a comprehensive

investigation, with a particular emphasis placed on the underlying ideas, problems, and

opportunities that lay beneath them. A special emphasis is being placed on the specific factors that

need to be taken into consideration when applying graph-based and sampling-based tactics in

static settings. In addition, various trajectories for future study are being evaluated.

Keywords: Path planning, Mobile robots, Review, Static environment, Sampling methods, Graph

methods.

This is an open-access article under the CC-BY 4.0 license

1. Introduction

Path planning is regarded as the primary and most important task for all robots in terms of

autonomy for obstacle avoidance and navigation in their surroundings. It is a prerequisite for

designing safe and collision-free paths in a crowded surroundings. The necessity of human

participation could be greatly lowered by autonomous systems. The autonomous robot must thus

be aware of all surrounding obstacles and determine a safe, practical, and best path depending on

the environmental variables.[1],[2] Combining environmental data with the designed trip model

creates a map. Hence, either partial or complete environmental data is required to create the path.

[1], [3] Therefore, the design of an autonomous robot in systems meant to carry out entirely

independent activities depends critically on path planning. The constructed path planning

technique helps the mobile robot to identify the optimal path in the search space. The most

important demand is that the produced road be safe and efficient under several environmental

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 84

conditions. [4] Path planning mostly aims to create a route free of obstacles so avoiding collisions

with them. Path planning is essential to guarantee that the autonomous robot can achieve the goal

along a path that respects several operational constraints, such power consumption and safety,

including path planning. [5] Furthermore, by knowing the possible path, the mobile robot can start

the control schema meant to lead it in the chosen direction. Path planning, then, simply creates a

list of configurations based on environmental guidelines, beginning with the starting configuration

and working through the goal configuration.[6] In static situations, path planning solves the

problem of finding a workable path for mobile robots between a starting point and a destination.

Guidance, surveillance, inspection, and assembly are among the several independent chores that

depend on this procedure. [7], [8] The main goal is to find a motion path that complies with the

particular limitations connected to the current mission, including the dimensions, kinematic

characteristics, and any environmental impediment of the robot.[9] Path planning is a subset of

motion planning, which also addresses actuator control management and collision avoidance

techniques in addition to path determination. [10], [11] This work will give an analytical study of

algorithms applied in stationary environments. Following an examination of several methods,

their applications, and performance metrics relevant to these non-dynamic environments, one can

assess the effectiveness and efficiency of these algorithms. Also include recommendations for

more research and possible developments in this sector in this paper.

2. Static Environments

In mobile robotics, a stationary environment is one in which the physical components remain

unmodified across time. This covers walls, furniture, and stationary monuments as well as

elements. Using pre-existing maps and geographical data, robots negotiating a stationary

environment may effectively pathfind and avoid obstacles. [8] Still, immovable things give

mobile robots special challenges. These difficulties can limit mobility, create dead ends, or need

careful navigation to cross safely. see Figure 1. For instance, a robot has to properly identify these

specified obstacles and change its direction to prevent collisions. [11] Moreover, variations in

sensor readings—such as those produced by surface textures or lighting conditions—may distort

the robot's perspective of these obstacles even in case the surroundings are stationary. Strong

sensor integration and effective algorithms are therefore essential for precisely spotting and

overcoming stationary obstacles. [11],[12] Usually, the effective development of mobile robots in

many applications rely on a knowledge of both the type of stationary obstacles and the traits of

stationary surroundings.

Figure (1): Static environment, the black area represent obstacles.

3. Taxonomy of Path Planning Algorithms

To be aware of the several subcategories in this field, the researcher has to examine the several

classifications of static environment route planning algorithms. Graph-based and sampling-based

techniques are two main forms of static environment path planning systems.

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 85

3.1. Graph-Based Algorithms

Graph search techniques govern how we examine connected data, from determining routes in

transportation networks to discovering links in social media. Graph search techniques investigate

the configuration space by examining a collection of configurations and their interactions. that

build a configuration-space network composed of nodes representing robot configurations and

edges connecting those nodes. The graph is then explored to determine the robot route leading to

the destination. The graph format enables the convenient inclusion of feasibility knowledge and

limitations across the robot's configuration space. In addition, the nonlinearity and complexity of

the configuration space have no direct impact on the scalability of these methods. Furthermore,

global graph search methods often provide coverage of all available free space with an acceptable

computational cost as long as the original graph's structure is suitable.[1] Several graph search

methods have been suggested for mobile robot path discovery in two and three dimensions,

including Dijkstra, A*, and others.

3.1.1. Dijkstra's Algorithm

Dijkstra's algorithm, developed by Dutch computer scientist Edsger W. Dijkstra in 1956, is a

foundational algorithm in computer science used for solving the single-source shortest path

problem in graph theory. Originating in Dijkstra's work on network routing optimization, the

method has clear uses in sectors including telecommunications and transportation. [13] Looking

one by one through all the paths in a weighted graph, Dijkstra's algorithm finds the shortest path

from a given beginning point to all the other points. [14],[15] It runs by keeping a priority queue

of vertices starting with the source vertex at zero and setting all others to infinity. [16] The

program chooses the vertex with the lowest tentative distance periodically, changes the distances

to its adjacent vertices, and finally notes it as "visited." This method keeps on until all reachable

vertices have been handled, therefore guaranteeing that the shortest path to every vertex is

precisely found [17], [18]. The Dijkstra's algorithm flowchart is shown in Fig. 2.

Figure (2): Flow chart of the Dijkstra's algorithm [14]

Dijkstra's method ensures an optimal solution for determining the shortest paths, so one of its

main advantages in graphs with non-negative weights is its efficiency.[19] Working with several

kinds of data structures, such as binary heaps and Fibonacci heaps, it takes between O(V2) and

O(E + V log V) time to run, where V is the number of vertices and E is the number of edges [18].

The simplicity and methodical approach of the algorithm also help one to grasp and use it.

Dijkstra's method has restrictions, though. Graphs with negative edge weights are not handled;

should negative weights exist, the method may yield erroneous answers. [20] Furthermore,

although it is ideal for determining the shortest path from a single source, it could not be as

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 86

effective when you have to identify the shortest paths from several sources [21],[22] in which case

an algorithm such as A* could be more suited. Dijkstra's method is still a useful tool for path

planning generally, particularly in cases of non-negative weights since it always finds the optimal

solution and runs consistently.

Wijaya et al. 2024 [18] has made it feasible for service robots to negotiate well while avoiding

obstacles by using of Dijkstra's algorithm for path planning optimization. The system comprised

of a Lidar sensor-equipped service robot interfaced with a Jetson Nano driven by an ESP32

microcontroller, which was mapped and obstacle detected using Control and communication came

from ROS. The study showed that Dijkstra's method is efficient in producing effective path

planning solutions with an average movement speed of 0.23 meters per second and minimal

positioning mistakes of 0.021 meters on the x-axis and 0.017 meters on the y-axis. This was

achieved by letting the efficient negotiations around three separate hurdles go without collision.

 Al shammrei et al. 2022 [23] provide an improved Dijkstra method to construct an optimal path

planning for mobile robots (MRs), thereby permitting the shortest paths by modelling the

surroundings of the robot as a directed graph. This effectively navigates around obstacles.

Following a pre-defined path, the MR dynamically alters the graph by removing nodes upon

obstacle identification and reevaluating the path in response using an ultrasonic sensor.

Simulations on a hand-built MR navigation environment with 9 nodes, 19 edges and 2 obstacles

were ran to demonstrate the efficiency and adaptability of our algorithm in real-time obstacle

avoidance. The improved Dijkstra algorithm generated, based on the outcomes, an optimal path.

The efficacy of the suggested path planning and obstacle avoidance algorithm is demonstrated in a

case study including a mobile robot. The robot first discovered an optimal path of Q' = {1, 2, 3, 5,

8} with a distance of 460 cm; but, it adjusted its path by deleting node 2 when it came against

obstacles at that node. The robot's meticulous halting at every intersection to evaluate prospective

threats in surrounding ones made real-time path adjustments conceivable. Path planning and

obstacle avoidance diagraphs are shown in Fig. 3.

Figure (3): Illustration of the diagraphs of the path planning and obstacle avoidance

implementation.[23]

ÇELİK et al. 2023 [21] Their aim was to improve Autonomous Mobile Robots' (AMRs') path

planning capacity by means of a modification to the conventional Dijkstra's algorithm, widely

applied for navigation tasks. Designing a low-cost AMR with a Raspberry Pi as the primary

processing unit and integrating a LIDAR sensor via the Robot Operating System (ROS) for

environment mapping and localization comprised the implementation. In both real-time and

Gazebo simulations, the updated Dijkstra method was compared against the original one.

Improving both navigation efficiency and decision-making time, results showed that the new

method provided pathways roughly 1% to 3% shorter than those produced by the conventional

Dijkstra algorithm. The navigation strategy created for an autonomous mobile robot (AMR)

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 87

utilizing the modified Dijkstra's algorithm is shown in Fig. 4. The figure shows a map where the

expected robot trajectory is shown by a thin red line signifying the navigation path. A green dot

marks the beginning of the motion; a purple dot marks the target position. The robot moves in a

thick red curving line to indicate its direction toward the objective. Because the improved

approach computes not only the distances to neighboring nodes but also to distant neighbors,

therefore enabling a possibly shorter path and smoother direction shifts that show a more

optimistic navigation than the original Dijkstra's algorithm. The image also shows minor

variations from the intended path, however, which are ascribed to real-world component

tolerances and non-ideal PID control tuning.

Figure (4): Modified Dijkstra’s algorithm-based navigation plan and motion trail on the

map.[21]

3.1.2. A* Algorithm

The A* algorithm is a fundamental pathfinding and graph traversal technique that originated in

the 1960s, specifically developed by Peter Hart, Nils Nilsson, and Bertram Raphael. It was

designed to find the shortest path from a starting node to a goal node while efficiently navigating a

weighted graph, making it useful in various fields, including artificial intelligence, robotics, and

computer games.[24] At its core, the A* algorithm operates by utilizing a best-first search

strategy. It combines features from Dijkstra's algorithm and Greedy Best-First Search by

maintaining a priority queue of nodes to explore, evaluated by a cost function denoted as

f(n)=g(n)+h(n) (1)

Here, g(n) represents the cost to reach the node from the start point, while h(n) is a heuristic

estimate of the cost to reach the goal from that node.[25] This dual approach allows A* to

efficiently zero in on the optimum path, ensuring that the search is guided toward the goal while

accounting for the simplest route available. [26] The path planning program structure of

traditional A* algorithm is shown in Fig. (5). One of the primary strengths of the A* algorithm is

its efficiency, especially when a well-designed heuristic is employed. [28] A properly defined

heuristic can significantly reduce the number of nodes explored, leading to quicker pathfinding

compared to uninformed search methods.[29] Additionally, A* is complete and optimal, meaning

it will always find the shortest path if one exists.[27] However, the A* algorithm does have some

weaknesses. The accuracy and performance of A* heavily depend on the chosen heuristic. If the

heuristic is poor, the search may become inefficient, exploring far more nodes than necessary.[30]

Additionally, while A* performs well in many scenarios, its memory usage can be substantial,

particularly in large search spaces, as it requires storing all explored nodes. This can lead to

inefficiencies in environments where memory is constrained.[24], [31]

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 88

Figure (5): Traditional A* algorithm path planning block diagram.[27]

XiangRong et al. 2021 [32] suggest an improved A-star algorithm to make the traditional A-star

algorithm better for planning robot paths in static environments by fixing the problem of how

much memory it needs. The implementation involves introducing three new concepts:

bidirectional search, a guideline, and a key point list, which optimize the algorithm’s function and

reduce the search area. Based on MATLAB simulations in an indoor 40x40 grid, the results show

that the improved algorithm reduces the memory footprint by over 60%, the search area by up to

62.04% in different situations, and overall efficiency, getting better step length and search time

than the original A-star algorithm.

Zhang et al. 2021 [24] offer an enhanced A* algorithm for mobile robot path planning that

rectifies the deficiencies of the conventional A* method, including the generation of suboptimal

paths characterized by excessive inflection points and insufficient smoothness. The execution

entails segmenting the distance between neighboring nodes, employing a bidirectional

optimization technique to eliminate superfluous nodes, and deploying a cubic spline function to

refine the trajectory. The findings indicate substantial enhancements, as the refined A* algorithm

reduces path length from 63.038 to 53.616 and decreases inflection points from 9 to 3, thereby

improving the efficiency and smoothness of planned trajectories for mobile robots in intricate

environments. Figure 6 depicts the trajectory produced by the enhanced A* algorithm.

Figure (6): Improved A* algorithm path.[24]

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 89

Xin et al. 2019 [27] augment the path planning capabilities of mobile robots by refining the A*

algorithm, with the objective of minimizing path length and enhancing smoothness for superior

navigation. The implementation incorporates a threshold value into the open list of the A*

algorithm to prioritize nodes, thereby considerably reducing search time. Additionally, it

incorporates Floyd's technique to remove superfluous inflection points and implements a

smoothing procedure to render the trajectory less abrupt, hence enhancing its suitability for

robotic motion. The MATLAB simulation results indicate that the enhanced A* algorithm

produces a more concise and smoother path than the conventional A* method, with a negligible

increase in planning time. Figure 7 depicts the path simulation outcomes derived from the

enhanced A* method, which integrates a threshold value in the open list and incorporates Floyd's

technique alongside a smoothing procedure. This graphic illustrates the best path from the

beginning point to the destination location, characterized by fewer inflection points and a more

streamlined trajectory than the conventional A* algorithm. The route seems more straight and

efficient, demonstrating the algorithm's capability to circumvent barriers successfully, thus

optimizing both path length and the robot's movement dynamics. This enhanced graphic illustrates

the algorithm's efficacy in producing a more viable and pragmatic route for mobile robots in

practical applications.

Figure (7): Improved A* algorithm path planning.[27]

3.2. Sampling-Based Algorithms

Sampling-based techniques are particularly significant in the fields of robotics and motion

planning for navigating immobile environments. These strategies facilitate the construction of a

representation of a specified space by generating random samples within that space. The

Probabilistic Roadmap (PRM) is a recognized technique in which edges represent potential paths

between nodes derived from samples. Rapidly-exploring Random Trees (RRT) represent a

significant sampling-based technique. In RRT, branches extending to randomly selected locations

in the space systematically construct a tree structure. RRT and PRM both rely on the assumption

that the environment is static, ensuring that pathways and obstacles remain constant throughout

the planning process. The stability of these algorithms allows them to optimize performance by

focusing on the creation of efficient paths without the need for constant adjustment. [33]

3.2.1. Probabilistic Roadmaps (PRMs)

One prominent path planning technique that emerged from the nexus of computational geometry

and robotics is the Probabilistic Roadmap (PRM) algorithm. The PRM algorithm was first

developed in the 1990s to address the challenges of motion planning in high-dimensional

environments. Its foundation is the establishment of a probabilistic framework for navigating

complex environments, which is occasionally impractical for conventional deterministic methods.

[34],[35] The learning phase and the inquiry phase are the two main stages in which the PRM

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 90

technique operates. The method chooses locations at random from the environment's empty

configuration space during the learning phase. It then creates a roadmap that captures the spatial

connectivity by connecting these samples along local paths free of obstacles. The algorithm uses

the set roadmap to traverse the network of connections in search of a feasible path after being

given a start point and an end point during the query phase. This approach makes it easier to

navigate through intricate environmental formations. [36],[37] A typical PRM algorithm's

learning process is depicted in Figure 8, and the PRM approach is shown in Figure 9. [38]

Figure (8): The learning process of typical PRM algorithm: (a) Obtaining free points; and

(b) constructing collision-free line segments.[38]

Figure (9): Demonstration of PRM algorithm

The PRM technique's capacity to manage high-dimensional spaces and its adaptability to various

contexts through modifications in sample density and roadmap connections delineate its

advantages. Moreover, it is particularly advantageous when the configuration space is excessively

intricate for traditional methods, as it explores multiple directions through randomness. [38], [40]

Nevertheless, the PRM approach possesses numerous shortcomings as well. The quality of the

generated roadmap primarily hinges on the sampling technique; insufficient sampling may yield

disjointed lines or suboptimal pathways. [41] Moreover, particularly in scenarios with fluctuating

obstacles or during real-time operations, the initial plan formulation may incur significant

computational expenses. [36] [42]

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 91

Li et al. 2022 [36] propose a revised form of the Probabilistic Roadmap Method (PRM) to

improve route planning for mobile smart cars. The writers address various PRM problems,

including its inefficiencies and inadequate information for choosing sampling sites, thereby that

this The authors modified the PRM technique to create a road point distance criteria. They also

applied a two-way incremental collision detection technique that reduced computing time and a

pseudo-random sampling technique emphasizing the primary spatial axis. Furthermore, Bessel

curves are used to smooth the produced pathways, so they are more suited for vehicle navigation.

The improved PRM method performs better in a larger spectrum of planning scenarios than the

conventional PRM algorithm, reduces pathways and collision detection calls, and makes

roadmaps far faster. Tests on a ROS platform and MATLAB simulations backed these results.

This raises the general standard and efficiency of the paths. Figure 10 shows the intended course

produced by the adjusted Probabilistic Roadmap method. This figure shows the road map

produced under the assumption that N, the number of sampling points, is set to 60 by use of the

modified method.

Figure (10): The modified PRM algorithm: (a) roadmap and (b) planned path.[36]

Ma et al. 2022 [42] proposing an improved bidirectional PRM algorithm that incorporates cubic

spline interpolation for enhanced path smoothness. The implementation involves modifying the

search strategy to alternately explore paths from both the starting and target nodes, effectively

reducing unnecessary node connections and improving computational efficiency, while

integrating cubic spline techniques to ensure smoother trajectory paths. Experimental results

demonstrated that the bidirectional PRM significantly decreased average search times and

achieved shorter path lengths compared to traditional PRM methods, with improvements of 24%

in search efficiency and a 4% enhancement in path length, ultimately validating the superiority of

the proposed approach in practical mobile robot navigation tasks. Fig. 11 illustrates the path

generated by the cubic spline bidirectional PRM algorithm. It visually represents how the

integration of cubic spline interpolation has transformed the originally segmented and potentially

abrupt path into a smooth trajectory for the mobile robot.

Figure (11): Cubic spline bidirectional PRM.[42]

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 92

3.2.2. Rapidly-exploring Random Trees (RRTs)

The Rapidly-exploring Random Tree (RRT) algorithm originated in the mid-1990s, developed by

Steven M. LaValle as a solution for high-dimensional path planning issues.[43] Its primary

purpose is to efficiently explore complex and high-dimensional spaces to find a feasible path from

a start point to a goal point, particularly in robotics and artificial intelligence applications. [44]

The core concept of RRT involves incrementally building a tree in the configuration space by

randomly sampling points and extending the tree towards these points.[45] Initially, the tree starts

at the initial configuration, and for each iteration, the algorithm randomly selects a position in the

space. It then determines the nearest node in the current tree and creates a new node by moving a

small step toward the random sample. This expansion continues until the generated tree reaches

the target configuration, forming a continuous path.[46] Fig. (12) and Fig. (13) show the block

diagram and the demonstration of the RRT algorithm. One of the significant strengths of RRT is

its capability to efficiently handle complex environments with obstacles and high dimensionality,

such as those found in robotic motion planning. Its ability to quickly explore the space makes it

suitable for real-time applications.[47] Additionally, one can easily adapt and extend RRT to

various variations, such as RRT*, which offer probabilistic completeness and optimality. [48],

[49] Still, the RRT method has many flaws as well. Sometimes the created paths are unduly

complicated and lack smoothness, which would not be appropriate for uses when a more exact

path is needed.[50] In particular in complex or constrained environments where it can be difficult

to plan because there aren't enough appropriate samples, randomness in the sampling process can

also lead to inconsistent performance. Longer planning periods or failure to identify workable

routes can follow from this. [46], [49], [51] Although RRT is a useful tool for path planning, its

limits should be taken into account and possible improvement techniques should be considered to

increase its relevance in different situations.

Figure (12): Block diagram of RRT algorithm.[33]

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 93

Figure (13): Demonstration of RRT algorithm

Chen et al. 2021 [52] suggests an enhanced RRT-Connect method (IRRT-Connect) to overrule the

restrictions of conventional algorithms, including local minima trapping and longer search

periods, so improving the efficiency of path planning for mobile robots. The implementation

consists in creating a third node in the configuration space to support a quadtree expansion and in

including a guiding mechanism that biassed the search for the goal point during node growth.

Following its implementation on a ROS mobile robot, experimental results show that the IRRT-

Connect algorithm substantially outperforms existing algorithms (RRT, RRT-Connect, and RRT*)

in many environments, achieving improvements of up to 91% in the number of iterations, 88% in

planning time, and 13% in path length for simpler environments, while maintaining efficiency in

more complex settings, so validating its effectiveness in real-world applications. Fig. 14 shows a

difficult environment marked by different obstacles the path produced by the enhanced RRT-

Connect algorithm (IRRT-Connect). Emphasizing how effectively the algorithm negotiates

around barriers, the figure illustrates a straight and smooth path from the beginning point to the

goal. The path seems to be straight, proving the efficiency of the method in lowering the total path

length while fast adjusting to challenges found along the road.

Figure (14): Path generated by the improved RRT-Connect algorithm.[52]

Wu et al. 2021 [46] Suggest an improved RRT algorithm called Fast-RRT algorithm, that aims to

improve the speed and stability of path planning in motion planning tasks by addressing the

limitations of the traditional RRT algorithm, which includes high search time variance and

inefficiency in narrow passages. Its implementation consists of two key modules: the Improved

RRT, which quickly finds an initial feasible path using a Fast-Sampling strategy that focuses on

unexplored areas and a Random Steering method that enhances performance in narrow spaces;

and the Fast-Optimal module, which fuses multiple paths to derive a near-optimal trajectory. The

results highlight the efficacy of Fast-RRT, demonstrating that it operates 20 times faster than the

RRT* algorithm with significantly lower search time variance. Fig. 15 illustrates the results of the

Fast-RRT algorithm compared to the traditional RRT algorithm during a test scenario. In this

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 94

figure, the sampling states generated by the algorithms are represented by red points, while the

green line depicts the random tree constructed by each algorithm. The blue line shows the feasible

path resulting from the search. The distribution of sampling points indicates that the RRT

algorithm spreads its points randomly throughout the state space, whereas the Fast-RRT

algorithm's points are more strategically located, being sparse around the random tree and densely

clustered in areas far from it. This strategic sampling approach is beneficial for guiding the

random tree toward unexplored areas efficiently, thereby facilitating a quicker path to the target.

 (a) (b)

Figure (15): Comparison of the operation results of (a) the improved RRT algorithm and (b)

the RRT algorithm.[46]

4. Summary

Dijkstra's and A* are deterministic graph search algorithms focused on finding the shortest paths

in defined graphs. In scenarios where heuristics can effectively guide the search, people generally

prefer A* for pathfinding. PRM and RRT are both sampling-based methods that work well for

robotics and high-dimensional spaces. RRT is especially good for environments that are complex

or changeable, but it needs extra work to make sure the paths are smooth. While PRM shines in

answering many questions against a fixed road map, it could find difficulties with dynamic

changes. Table 1 summarizes the several techniques covered in this paper.

Table (1): Summary of the algorithms in static environments.

Algorithm
Dijkstra's

Algorithm
A* Algorithm

Probabilistic Roadmaps

(PRM)

Rapidly-exploring

Random Trees

(RRT)

Strengths

guarantees an

optimal solution

for finding the

shortest paths

ability to work

well with

various data

structures

easy to

implement and

understand.

complete and optimal

Adapts well to

different heuristic

functions based on

specific

environments.

ability to handle high-

dimensional spaces and

its adaptability to

various environments

particularly beneficial in

situations where the

configuration space is

too complicated for

traditional methods

Handles complex

environments and

high-dimensional

spaces effectively.

Capable of real-

time exploration

and can be

adapted with

variations like

RRT* for optimal

solutions.

Limitations Inefficient for The accuracy and quality of the generated Paths can be

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 95

finding shortest

paths from

multiple

sources.

Does not handle

graphs with

negative edge

weights

performance heavily

depend on the chosen

heuristic

memory usage can be

substantial

roadmap heavily

depends on the sampling

strategy

can be computationally

expensive

jagged or

suboptimal;

subsequently,

refinement

strategies may be

needed

Performance may

deteriorate in

tightly constrained

environments

without proper

adjustments.

Optimality Yes Yes
No (depends on

roadmap quality)

No (but can be

adapted to RRT*

for optimality)

5. Conclusion

This study emphasizes the critical need of path planning in the realm of autonomous robotics by

giving a thorough summary of many techniques and their applications in navigation and obstacle

avoidance. According to the study, good path design guarantees safety in challenging

environments and boosts robot navigation's performance. Among the algorithms—Dijkstra, A*,

and Rapidly-exploring Random Trees (RRT)—there are advantages and drawbacks. This

emphasizes the need of continually adjusting to match various circumstances. Including creative

ideas and improving current techniques will be vital as the discipline develops to increase robot

autonomy, lower human intervention, and maximize performance in practical uses. Future study

should improve current models and generate hybrid algorithms to handle these problems. At last,

this will provide more sophisticated and practical self-driving systems. The results of the study

greatly progress the present conversation on robotic navigation. They underline how path planning

helps to provide consistent and efficient autonomous operations.

REFERENCES

1. L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, “Path planning techniques for mobile

robots: Review and prospect,” Oct. 01, 2023, Elsevier Ltd. doi: 10.1016/j.eswa.2023.120254.

2. R. Raj and A. Kos, “A Comprehensive Study of Mobile Robot: History, Developments,

Applications, and Future Research Perspectives,” Jul. 01, 2022, MDPI. doi:

10.3390/app12146951.

3. J. R. Sánchez-Ibáñez, C. J. Pérez-Del-pulgar, and A. García-Cerezo, “Path planning for

autonomous mobile robots: A review,” Dec. 01, 2021, MDPI. doi: 10.3390/s21237898.

4. B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and A. Jagadeesh, “A review: On path

planning strategies for navigation of mobile robot,” Aug. 01, 2019, China Ordnance Society.

doi: 10.1016/j.dt.2019.04.011.

5. L. Yang et al., “Path Planning Technique for Mobile Robots: A Review,” Oct. 01, 2023,

Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/machines11100980.

6. C. Zhou, B. Huang, and P. Fränti, “A review of motion planning algorithms for intelligent

robots,” Feb. 01, 2022, Springer. doi: 10.1007/s10845-021-01867-z.

7. B. K. Jogeshwar and K. Lochan, “Algorithms for Path Planning on Mobile Robots,” in IFAC-

PapersOnLine, Elsevier B.V., 2022, pp. 94–100. doi: 10.1016/j.ifacol.2022.04.016.

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 96

8. J. R. Sánchez-Ibáñez, C. J. Pérez-Del-pulgar, and A. García-Cerezo, “Path planning for

autonomous mobile robots: A review,” Dec. 01, 2021, MDPI. doi: 10.3390/s21237898.

9. S. Lin, A. Liu, J. Wang, and X. Kong, “A Review of Path-Planning Approaches for Multiple

Mobile Robots,” Sep. 01, 2022, MDPI. doi: 10.3390/machines10090773.

10. F. Gul, W. Rahiman, and S. S. Nazli Alhady, “A comprehensive study for robot navigation

techniques,” Jan. 01, 2019, Cogent OA. doi: 10.1080/23311916.2019.1632046.

11. K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, “A Survey of Path Planning Algorithms

for Mobile Robots,” Vehicles, vol. 3, no. 3, pp. 448–468, Sep. 2021, doi:

10.3390/vehicles3030027.

12. B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and A. Jagadeesh, “A review: On path

planning strategies for navigation of mobile robot,” Aug. 01, 2019, China Ordnance Society.

doi: 10.1016/j.dt.2019.04.011.

13. X. Zhou, J. Yan, M. Yan, K. Mao, R. Yang, and W. Liu, “Path Planning of Rail-Mounted

Logistics Robots Based on the Improved Dijkstra Algorithm,” Applied Sciences

(Switzerland), vol. 13, no. 17, Sep. 2023, doi: 10.3390/app13179955.

14. L. S. Liu et al., “Path Planning for Smart Car Based on Dijkstra Algorithm and Dynamic

Window Approach,” Wirel Commun Mob Comput, vol. 2021, 2021, doi:

10.1155/2021/8881684.

15. X. Li, “Path planning of intelligent mobile robot based on Dijkstra algorithm,” in Journal of

Physics: Conference Series, IOP Publishing Ltd, Dec. 2021. doi: 10.1088/1742-

6596/2083/4/042034.

16. R. Szczepanski and T. Tarczewski, “Global path planning for mobile robot based on Artificial

Bee Colony and Dijkstra’s algorithms,” in Proceedings - 2021 IEEE 19th International Power

Electronics and Motion Control Conference, PEMC 2021, Institute of Electrical and

Electronics Engineers Inc., Apr. 2021, pp. 724–730. doi:

10.1109/PEMC48073.2021.9432570.

17. A. Alyasin, E. I. Abbas, and S. D. Hasan, “An Efficient Optimal Path Finding for Mobile

Robot Based on Dijkstra Method,” in 4th Scientific International Conference Najaf, SICN

2019, Institute of Electrical and Electronics Engineers Inc., Apr. 2019, pp. 11–14. doi:

10.1109/SICN47020.2019.9019345.

18. R. S. Wijaya, A. Mahendra, S. Prayoga, and A. Wibisana, “Path Planning Application using

Dijkstra Algorithm on Service Robot,” 2024, pp. 262–271. doi: 10.2991/978-94-6463-620-

8_20.

19. D. Rachmawati and L. Gustin, “Analysis of Dijkstra’s Algorithm and A∗ Algorithm in

Shortest Path Problem,” in Journal of Physics: Conference Series, Institute of Physics

Publishing, Jul. 2020. doi: 10.1088/1742-6596/1566/1/012061.

20. M. Luo, X. Hou, and J. Yang, “Surface Optimal Path Planning Using an Extended Dijkstra

Algorithm,” IEEE Access, vol. 8, pp. 147827–147838, 2020, doi:

10.1109/ACCESS.2020.3015976.

21. O. M. ÇELİK and M. KÖSEOĞLU, “A Modified Dijkstra Algorithm for ROS Based

Autonomous Mobile Robots,” Journal of Advanced Research in Natural and Applied

Sciences, vol. 9, no. 1, pp. 205–217, Mar. 2023, doi: 10.28979/jarnas.1119957.

22. J. Pak, J. Kim, Y. Park, and H. Il Son, “Field Evaluation of Path-Planning Algorithms for

Autonomous Mobile Robot in Smart Farms,” IEEE Access, vol. 10, pp. 60253–60266, 2022,

doi: 10.1109/ACCESS.2022.3181131.

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 97

23. S. Alshammrei, S. Boubaker, and L. Kolsi, “Improved Dijkstra Algorithm for Mobile Robot

Path Planning and Obstacle Avoidance,” Computers, Materials and Continua, vol. 72, no. 3,

pp. 5939–5954, 2022, doi: 10.32604/cmc.2022.028165.

24. L. Zhang and Y. Li, “Mobile Robot Path Planning Algorithm Based on Improved A Star,” in

Journal of Physics: Conference Series, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1742-

6596/1848/1/012013.

25. G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, “Geometric A-Star Algorithm: An

Improved A-Star Algorithm for AGV Path Planning in a Port Environment,” IEEE Access,

vol. 9, pp. 59196–59210, 2021, doi: 10.1109/ACCESS.2021.3070054.

26. H. Liu and Y. Zhang, “ASL-DWA: An Improved A-Star Algorithm for Indoor Cleaning

Robots,” IEEE Access, vol. 10, pp. 99498–99515, 2022, doi:

10.1109/ACCESS.2022.3206356.

27. W. Xin, L. Wanlin, F. Chao, and H. Likai, “Path Planning Research Based on An Improved

A∗ Algorithmfor Mobile Robot,” in IOP Conference Series: Materials Science and

Engineering, Institute of Physics Publishing, Aug. 2019. doi: 10.1088/1757-

899X/569/5/052044.

28. F. Duchon et al., “Path planning with modified A star algorithm for a mobile robot,” in

Procedia Engineering, Elsevier Ltd, 2014, pp. 59–69. doi: 10.1016/j.proeng.2014.12.098.

29. D. Xiang, H. Lin, J. Ouyang, and D. Huang, “Combined improved A* and greedy algorithm

for path planning of multi-objective mobile robot,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi:

10.1038/s41598-022-17684-0.

30. X. Dai, S. Long, Z. Zhang, and D. Gong, “Mobile robot path planning based on ant colony

algorithm with a∗ heuristic method,” Front Neurorobot, vol. 13, Apr. 2019, doi:

10.3389/fnbot.2019.00015.

31. O. O. Martins, A. A. Adekunle, O. M. Olaniyan, and B. O. Bolaji, “An Improved multi-

objective a-star algorithm for path planning in a large workspace: Design, Implementation,

and Evaluation,” Sci Afr, vol. 15, Mar. 2022, doi: 10.1016/j.sciaf.2021.e01068.

32. T. XiangRong, Z. Yukun, and J. XinXin, “Improved a-star algorithm for robot path planning

in static environment,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb.

2021. doi: 10.1088/1742-6596/1792/1/012067.

33. J. Jermyn, “A Comparison of the Effectiveness of the RRT, PRM, and Novel Hybrid RRT-

PRM Path Planners,” Int J Res Appl Sci Eng Technol, vol. 9, no. 12, pp. 600–611, Dec. 2021,

doi: 10.22214/ijraset.2021.39297.

34. S. Alarabi, C. Luo, and M. Santora, “A PRM Approach to Path Planning with Obstacle

Avoidance of an Autonomous Robot,” in 2022 8th International Conference on Automation,

Robotics and Applications, ICARA 2022, Institute of Electrical and Electronics Engineers

Inc., 2022, pp. 76–80. doi: 10.1109/ICARA55094.2022.9738559.

35. G. Song, S. Thomas, and N. M. Amato, “A general framework for PRM motion planning,” in

2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422),

2003, pp. 4445–4450.

36. Q. Li, Y. Xu, S. Bu, and J. Yang, “Smart Vehicle Path Planning Based on Modified PRM

Algorithm,” Sensors, vol. 22, no. 17, Sep. 2022, doi: 10.3390/s22176581.

37. L. Changan, C. Jingang, and L. Chunyang, “Path Planning for Mobile Robot Based on an

Improved Probabilistic Roadmap Method *,” 2009.

 (American Journal of Technology Advancement)

American Journal of Technology Advancement 98

38. L. Qiao, X. Luo, and Q. Luo, “An Optimized Probabilistic Roadmap Algorithm for Path

Planning of Mobile Robots in Complex Environments with Narrow Channels,” Sensors, vol.

22, no. 22, Nov. 2022, doi: 10.3390/s22228983.

39. L. Jaillet and T. Siméon, “A PRM-based motion planner for dynamically changing

environments,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2004, pp. 1606–1611. doi: 10.1109/iros.2004.1389625.

40. A. MSaeed, K. Shaaban Rijab, A. M. Saeed, and K. S. Rijab, “Enhancing Performance of

Path Planning PRM Algorithm for Automated Boat Using PID Controller,” Journal of Global

Scientific Research in Electrical and Electronic Engineering, vol. 9, pp. 3678–3689, 2024,

doi: 10.5281/jgsr.2024.14039138.

41. R. Bohlin and L. E. Kavraki, “Path planning using Lazy PRM,” Proceedings-IEEE

International Conference on Robotics and Automation, vol. 1, pp. 521–528, 2000, doi:

10.1109/ROBOT.2000.844107.

42. X. Ma, R. Gong, Y. Tan, H. Mei, and C. Li, “Path Planning of Mobile Robot Based on

Improved PRM Based on Cubic Spline,” Wirel Commun Mob Comput, vol. 2022, 2022, doi:

10.1155/2022/1632698.

43. L. Garrote, C. Premebida, M. Silva, and U. Nunes, “An RRT-based navigation approach for

mobile robots and automated vehicles,” in Proceedings - 2014 12th IEEE International

Conference on Industrial Informatics, INDIN 2014, Institute of Electrical and Electronics

Engineers Inc., Nov. 2014, pp. 326–331. doi: 10.1109/INDIN.2014.6945533.

44. J. G. Kang, D. W. Lim, Y. S. Choi, W. J. Jang, and J. W. Jung, “Improved RRT-connect

algorithm based on triangular inequality for robot path planning,” Sensors (Switzerland), vol.

21, no. 2, pp. 1–34, Jan. 2021, doi: 10.3390/s21020333.

45. I. Noreen, A. Khan, and Z. Habib, “A Comparison of RRT, RRT* and RRT*-Smart Path

Planning Algorithms,” 2016.

46. Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-RRT: A RRT-based optimal path finding

method,” Applied Sciences (Switzerland), vol. 11, no. 24, Dec. 2021, doi:

10.3390/app112411777.

47. B. Liu and C. Liu, “Path planning of mobile robots based on improved RRT algorithm,” in

Journal of Physics: Conference Series, IOP Publishing Ltd, Apr. 2022. doi: 10.1088/1742-

6596/2216/1/012020.

48. R. Mashayekhi, M. Y. I. Idris, M. H. Anisi, I. Ahmedy, and I. Ali, “Informed RRT∗-Connect:

An Asymptotically Optimal Single-Query Path Planning Method,” IEEE Access, vol. 8, pp.

19842–19852, 2020, doi: 10.1109/ACCESS.2020.2969316.

49. P. Xin, X. Wang, X. Liu, Y. Wang, Z. Zhai, and X. Ma, “Improved Bidirectional RRT*

Algorithm for Robot Path Planning,” Sensors, vol. 23, no. 2, Jan. 2023, doi:

10.3390/s23021041.

50. K. Hao, Y. Yang, Z. Li, Y. Liu, and X. Zhao, “CERRT: A Mobile Robot Path Planning

Algorithm Based on RRT in Complex Environments,” Applied Sciences (Switzerland), vol.

13, no. 17, Sep. 2023, doi: 10.3390/app13179666.

51. Feraco, S. ; Luciani, S. ; Bonfitto, and A. ; Amati, “A local trajectory planning and control

method for autonomous vehicles based on the RRT algorithm,” 2021.

52. J. Chen, Y. Zhao, and X. Xu, “Improved RRT-Connect Based Path Planning Algorithm for

Mobile Robots,” IEEE Access, vol. 9, pp. 145988–145999, 2021, doi:

10.1109/ACCESS.2021.3123622.

