Polymer Nanocomposites: Bridging the Gap Between Polymers and Nanoparticles
Keywords:
Polymer nanocomposites, Nanofillers, Layered nanocomposites, Fibrous nanocomposites, Spherical nanocomposites, Interfacial interactionsAbstract
Polymer nanocomposite (PNC) represents a novel class of materials which has resulted from the combination of polymer polymer matrices with nanometer-sized particles. The mechanical property and robustness of the hybrid structure as well as the functional properties are superior to those of pure polymer composite. In this review, we also attempt to give an in-depth discussion of basic principles of PNCs such as classification and different types of PNCs, synthesis methods, analytical characterization techniques, and PNC properties (intrinsic). The PNCs are divided into three main types according to the geometric dimensions of the embedded nanofillers. The paper further addresses particular properties of each type of nanofiller and their further benefits and weaknesses on the global performance of resulting PNCs. The research analyses various approaches for the production of PNCs, such as melt mixing, in-situ polymerisation, and solution blending. Each approach has its own advantages and limitations. The text focuses on the characterization of PNCs, such as their shape, the structure of the inner core, and the phenolic matrix, as well as their physical properties, obtained using sophisticated diagnostic methods. interphase between the polymer matrix and the nanofillers. The paper deals with the study of the structural, mechanical, thermal, electrical, and functional properties of PNCs, and highlights the possibilities of Nanoparticulate filler to improve the functional properties of polymer composites. Particular importance of the nanoparticle/polymer matrix interface is stressed because it immobilizes the overall properties of polymer nanocomposites (PNCs). Special attention is given to the importance of achieving the homogeneous dispersion of the nanoparticles as well as to the modification of the interface bonding behavior. In a nutshell, this review serves as a tip of spear in summarizing the relentless progress of PNCs, and it sheds light on the strategic approaches toward the formulation and processing as well as the potential applications of PNCs. The contributions assembled here in this book certainly will serve as a good bibliographic reference for both academic researchers, industry researchers and research students working in the field related to polymer nanocomposite technology.
References
1. Atta, A. M., Al-Lohedan, H. A., El-saeed, A. M., Al-Shafey, H. I., & Wahby, M. H. (2017). Epoxy embedded with TiO2 nanogel composites as promising self-healing organic coatings of steel. Progress in Organic Coatings, 105, 291-302.
2. Bachar, S. C., & Mazumder, K. (2022). Environmental and health impacts of polymer nanocomposites. In Advanced Polymer Nanocomposites (pp. 547-570). Woodhead Publishing.
3. Bazrgari, D., Moztarzadeh, F., Sabbagh-Alvani, A. A., Rasoulianboroujeni, M., Tahriri, M., & Tayebi, L. (2018). Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceramics International, 44(1), 1220.
4. Chen, J., Liu, B., Gao, X., & Xu, D. (2018). A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC advances, 8(49), 28048-28085.
5. Chen, J., Yao, Y., & Zhang, B. (2022). The interface debonding in particle-reinforced nonlinear viscoelastic polymer composites. Meccanica, 57(6), 1353-1367.
6. Ferreira, F. V., Cividanes, L. D. S., Brito, F. S., Menezes, B. R. C. D., Franceschi, W., Nunes Simonetti, E. A., ... & Thim, G. P. (2016). Functionalization of carbon nanotube and applications. Functionalizing graphene and carbon nanotubes: a review, 31-61.
7. Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2-30.
8. Gu, H., Ma, C., Gu, J., Guo, J., Yan, X., Huang, J., ... & Guo, Z. (2016). An overview of multifunctional epoxy nanocomposites. Journal of Materials Chemistry C, 4(25), 5890-5906.
9. Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites. Applied Sciences, 8(9), 1696.
10. Hiremath, A., Murthy, A. A., Thipperudrappa, S., & KN, B. (2021). Nanoparticles filled polymer nanocomposites: A technological review. Cogent engineering, 8(1), 1991229.
11. Idumah, C. I., Hassan, A., Ogbu, J., Ndem, J. U., & Nwuzor, I. C. (2019). Recently emerging advancements in halloysite nanotubes polymer nanocomposites. Composite Interfaces, 26(9), 751-824.
12. Iqbal, T., Hassan, A., & Ghazal, S. (2016). Synthesis of iron oxide, cobalt oxide and silver nanoparticles by different techniques: a review. Int. J Sci. Eng. Res, 7, 1178-1221.
13. Khan, M. U., Reddy, K. R., Snguanwongchai, T., Haque, E., & Gomes, V. G. (2016). Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid and Polymer Science, 294, 1599-1610.
14. Krishnaiah, P., Ratnam, C. T., & Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135, 583-595.
15. Kumar, A., Ghosh, P. K., Yadav, K. L., & Kumar, K. (2017). Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innova tive dispersion technique. Composites Part B: Engineering, 113, 291.
16. Ladani, R. B., Bhasin, M., Wu, S., Ravindran, A. R., Ghorbani, K., Zhang, J., ... & Wang, C. H. (2018). Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers. Engineering Fracture Mechanics, 203, 102-114.
17. Li, X., Wang, C., Cao, Y., & Wang, G. (2018). Functional MXene materials: progress of their applications. Chemistry–An Asian Journal, 13(19), 2742-2757.
18. Liang, C., Song, P., Gu, H., Ma, C., Guo, Y., Zhang, H., ... & Gu, J. (2017). Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 102, 126-136.
19. Liu, F., Hu, N., Zhang, J., Atobe, S., Weng, S., Ning, H., ... & Yuan, W. (2016). The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC advances, 6(71), 66658-66664.
20. Maghsoudlou, M. A., Isfahani, R. B., Saber-Samandari, S., & Sadighi, M. (2019). Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations. Composites Part B: Engineering, 175, 107119.
21. Machrafi, H., Lebon, G., & Iorio, C. S. (2016). Effect of volume-fraction dependent agglomeration of nano particles on the thermal conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Composites Science and Technology, 130, 78.
22. Mehrizi, M. Z., Beygi, R., & Eisaabadi, G. (2016). Synthesis of Al/TiC–Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment. Ceramics International, 42(7), 8895.
23. Morsi, R. E., Labena, A., & Khamis, E. A. (2016). Core/shell (ZnO/polyacrylamide) nanocomposite: In-situ emul sion polymerization, corrosion inhibition, anti-micro bial and anti-biofilm characteristics. Journal of the Taiwan Institute of Chemical Engineers, 63, 512.
24. Msekh, M. A., Cuong, N. H., Zi, G., Areias, P., Zhuang, X., & Rabczuk, T. (2018). Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Engineering Fracture Mechanics, 188, 287.
25. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. M., ... & Schmid, M. (2017). Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 7(4), 74.
26. Naderi-Samani, H., Razavi, R. S., Loghman-Estarki, M. R., & Ramazani, M. (2017). The effects of organoclay on the morphology and mechanical properties of PAI/ clay nanocomposites coatings prepared by the ultrasonication assisted process. Ultrasonics Sonochemistry, 38, 306.
27. Nayak, R. K., & Ray, B. C. (2018). Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites. Archives of Civil and Mechanical Engineering, 18(4), 1597-1607.
28. Naz, A., Kausar, A., & Siddiq, M. (2016). Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: a review. Polymer-Plastics Technology and Engineering, 55(6), 604-625.
29. Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in materials science, 90, 75-127.
30. Parameswaranpillai, J., Gopi, J. A., Chavali, M., Midhun Dominic, C. D., Radoor, S., Jayakumar, A., ... & Thomas, S. (2022). Advances in epoxy/synthetic/natural fiber composites. In Handbook of Epoxy/Fiber Composites (pp. 1093-1120). Singapore: Springer Nature Singapore.
31. Saba, N., Jawaid, M., & Asim, M. (2016). Recent advances in nanoclay/natural fibers hybrid composites. Nanoclay reinforced polymer composites: natural fibre/nanoclay hybrid composites, 1-28.
32. Salahuddin, N. A., El‐Kemary, M., & Ibrahim, E. M. (2017). High‐performance flexible epoxy/ZnO nanocomposites with enhanced mechanical and thermal properties. Polymer Engineering & Science, 57(9), 932-946.
33. Shanshool, H. M., Yahaya, M., Yunus, W. M. M., & Abdullah, I. Y. (2016). Investigation of energy band gap in polymer/ZnO nanocomposites. Journal of Materials Science: Materials in Electronics, 27(9), 9804.
34. Sharifzadeh, E., & Cheraghi, K. (2021). Temperature- affected mechanical properties of polymer nano composites from glassy-state to glass transition temperature. Mechanics of Materials, 160, 103990.
35. Tan, B., & Thomas, N. L. (2016). A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 514, 595-612.
36. Tomić, M. D., Dunjić, B., Bajat, J. B., Likić, V., Rogan, J., & Djonlagić, J. (2016). Anticorrosive epoxy/clay nano composite coatings: Rheological and protective properties. Journal of Coatings Technology and Research, 13(3), 439.
37. Tong, Y., Zhang, L., Bass, P., Rolin, T. D., & Cheng, Z.-Y. (2018). Influence of silane coupling agent on micro structure and properties of CCTO-P(VDF-CTFE) com posites. Journal of Advanced Dielectrics, 8(2), 1850008.
38. Tu, S., Jiang, Q., Zhang, X., & Alshareef, H. N. (2018). Large dielectric constant enhancement in MXene percolative polymer composites. ACS nano, 12(4), 3369-3377.
39. Vengatesan, M. R., & Mittal, V. (2016). Nanoparticle‐and Nanofiber‐Based Polymer Nanocomposites: An Overview. Spherical and fibrous filler composites, 1-38.
40. Wong, T. T., Lau, K. T., Tam, W. Y., Etches, J. A., Kim, J. K., & Wu, Y. (2016). Effects of silane surfactant on Nano-ZnO and rheology properties of nano-ZnO/epoxy on the UV absorbability of nano-ZnO/epoxy/micron-HGF composite. Composites Part B: Engineering, 90, 378-385.
41. Xue, Q., & Sun, J. (2016). Electrical conductivity and percolation behavior of polymer nanocomposites. Polymer Nanocomposites: Electrical and Thermal Properties, 51-82.
42. Yao, H., Hawkins, S. A., & Sue, H. J. (2017). Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Composites Science and Technology, 146, 161-168.
43. Zhang, H., Wang, L., Chen, Q., Li, P., Zhou, A., Cao, X., & Hu, Q. (2016). Preparation, mechanical and anti-friction performance of MXene/polymer composites. Materials & Design, 92, 682-689.