The Effect of the Different Coefficient of Friction in Clamp Dies on the Pipe Deformation

Authors

  • Hassan Raheem Hassan College of Engineering, Al-Shatrah University, Thi-Qar, Iraq

Keywords:

Try to vary the wording of each phrase if possible for the sake of differentiation, but keep the meaning

Abstract

Bent tube is one type of tube forming process whereby the movement position of the neutral axis shifts to the inner arc and the change of wall thickness distribution occurs. The present paper investigates how these phenomena evolve across the phenomenon and determine the effects of a different coefficient of friction between 0.1 and 0.5 and bending angles ranging from 15° to 90°. Finite element analysis using ABAQUS software has been used to study the behavior of both stainless steel and steel alloys. The findings show that stainless steel has required steady performance with little changes trend in the wall thickness and neutral axis displacement. In comparison, steel alloys are found to be more sensitive to friction, inducing significantly larger changes in the wall thickness and more obvious displacement of the neutral axis, especially at larger bending angles and friction coefficients of strip curvature. The paper is concerned with an examination of material responses through a comparative analysis, focusing on the role of friction to command the structural end results of the tube bending process.

References

1. J. Li, C.Y. Zhou, P. Cui, X.H. He, Plastic limit loads for pipe bends under combined bending and torsion moment, Int. J. Mech. Sci. 92 (2015) 133–145. doi: 10.1016/j.ijmecsci.2014.12.011.

2. Y. Hea, L. Heng, Z. Zhiyong, Z. Mei, L. Jing, L. Guangjun, Advances and trends on tube bending forming technologies, Chinese J. Aeronaut. 25 (2012) 1–12. doi:10.1016/S1000-9361(11)60356-7.

3. L. Heng, Y. He, Z. Mei, S. Zhichao, G. Ruijie, Role of mandrel in NC precision bending process of thin-walled tube, Int. J. Mach. Tools Manuf. 47 (2007) 1164-I 175. doi:doi: 10.1016/j.ijrnachtools.2006.09.001.

4. Daxin E, Y. Liu, Springback and time-dependent springback of 1Cr18Ni9Ti stainless steel tubes under bending, Mater. Des. 31 (2010) 1256–1261. doi:10.1016/j.matdes.2009.09.026.

5. Z.Q. Jiang, H. Yang, M. Zhan, X.D. Xu, G.J. Li, Coupling effects of material properties and the bending angle on the springback angle of a titanium alloy tube during numerically controlled bending, Mater. Des. 31 (2010) 2001–2010. doi:10.1016/j.matdes.2009.10.029.

6. G.Y. Zhao, Y.L. Liu, C.S. Dong, H. Yang, X.G. Fan, Analysis of wrinkling limit of rotary-draw bending process for thin-walled rectangular tube, J. Mater. Process. Technol. 210 (2010) 1224–1231. doi:10.1016/j.jmatprotec.2010.03.009.

7. J.E. Miller, S. Kyriakides, E. Corona, On bend-stretch forming of aluminum extruded tubes - II: analysis, Int. J. Mech. Sci. 43 (2001) 1283–1317. doi:10.1016/S0020-7403(00)00039-4.

8. S. Kyriakides, E. Corona, J.E. Miller, Effect of yield surface evolution on bending induced cross sectional deformation of thin-walled sections, Int. J. Plast. 20 (2004) 607–618. doi:10.1016/S0749-6419(03)00075-5.

9. J. Wang, R. Agarwal, Tube bending under axial force and internal pressure, J. Manuf. Sci. Eng. 128 (2006) 598–605. doi:10.1115/1.2112987.

10. N.C. Tang, Plastic-deformation analysis in tube bending, Int. J. Press. Vessel. Pip. 77 (2000) 751–759. doi:10.1016/S0308-0161(00)00061-2.

11. C.K. Oh, Y.J. Kim, C.Y. Park, Effects of local wall thinning on net-section limit loads for pipes under combined pressure and bending, Nucl. Eng. Des. 239 (2009) 261–273. doi:10.1016/j.nucengdes.2008.10.019.

12. H. Lee, C.J.V. Tyne, D. Field, Finite element bending analysis of oval tubes using rotary draw bender for hydroforming applications, J. Mater. Process. Technol. 168 (2005) 327–335. doi:10.1016/j.jmatprotec.2004.11.019.

13. L. Heng, Y. He, A study on multi-defect constrained bendability of thin-walled tube NC bending under different clearance, Chinese J. Aeronaut. 24 (2011) I 02-112.

14. H. Li, H. Yang, M. Zhan, R.J. Gu, Forming characteristics of thin-walled tube bending process with small bending radius, Trans. Nonferrous Met. Soc. China (English Ed. 16 (2006) s613–s623. doi:10.1016/S1003-6326(06)60266-5.

15. S. Kajikawa, G. Wang, T. Kuboki, Prevention of defects by optimizing mandrel position and shape in rotary draw bending of copper tube with thin wall, Procedia Manuf. 15 (2018) 828–835.

16. B. Engel, H.R. Hassan, Investigation of neutral axis shifting in rotary draw bending processes for tubes, Steel Res. Int. 85 (2014) 1209–1214. doi:10.1002/srin.201300333.

17. E. Daxin, Y. Liu, H. Feng, Deformation analysis for the rotary draw bending process of circular tubes: stress distribution and wall thinning, Steel Res. Int. 81 (2010) 1084–1088. doi:10.1002/srin.201000109.

18. H. Li, H. Yang, J. Yan, M. Zhan, Numerical study on deformation behaviors of thin-walled tube NC bending with large diameter and small bending radius, Comput. Mater. Sci. 45 (2009) 921–934. doi:doi: 10.1016/j.commatsci.2008.12.018.

19. D. Maier, S. Stebner, A. Ismail, M. Dölz, B. Lohmann, S. Münstermann, W. Volk, The influence of freeform bending process parameters on residual stresses for steel tubes, Adv. Ind. Manuf. Eng. 2 (2021). doi:10.1016/j.aime.2021.100047.

20. E. Simonetto, A. Ghiotti, S. Bruschi, Dynamic detection of tubes wrinkling in three roll push bending, Procedia Eng. 207 (2017) 2316–2321. doi:10.1016/j.proeng.2017.10.1001.

21. J. Chen, E. Daxin, J. Zhang, Effects of process parameters on wrinkling of thin-walled circular tube under rotary draw bending, Int. J. Adv. Manuf. Technol. 68 (2013) 1505–1516. doi:10.1007/s00170-013-4938-5.

22. H. Li, H. Yang, M. Zhan, R.J. Gu, The interactive effects of wrinkling and other defects in thin-walled tube NC bending process, J. Mater. Process. Technol. 187–188 (2007) 502–507. doi:doi:10.1016/j.jmatprotec.2006.11.100.

23. Breaking through the bending limit of al-alloy tubes by cryogenic effect controlled mechanical properties and friction behaviours, Int. J. Mach. Tools Manuf. 195 (2024). doi:doi.org/10.1016/j.ijmachtools.2023.104111.

24. C. Cheng, G. Wei, H. Zhang, Z. Ma, J. Tao, C. Liu, X. Guo, Theoretical analysis, finite element modeling and experimental investigation of the impact of friction between tube and bending die on the formability of the tube during the free-bending process, CIRP J. Manuf. Sci. Technol. 44 (2023) 104–115. doi:doi.org/10.1016/j.cirpj.2023.05.003.

25. J. Wu, Z. Zhang, Q. Shang, F. Li, Y. Wang, Y. Hui, H. Fan, A method for investigating the springback behavior of 3D tubes, Int. J. Mech. Sci. 131–132 (2017) 191–204. doi:dx.doi.org/10.1 0l 6/j.ijmecsci.2017 .06.047.

26. Z.K. Zhang, J.J. Wu, R.C. Guo, M.Z. Wang, F.F. Li, S.C. Guo, Y. Wang, W.P. Liu, A semi-analytical method for the springback prediction of thick-walled 3D tubes, Mater. Des. 99 (2016) 57–67. doi:dx.doi.org/10.1016/j.matdes.2016.03.026.

27. E. Daxin, M. Chen, Numerical solution of thin-walled tube bending springback with exponential hardening law, Steel Res. Int. 81 (2010) 286–291. doi:10.1002/srin.200900122.

28. H. Li, H. Yang, F.F. Song, M. Zhan, G.J. Li, Springback characterization and behaviors of high-strength Ti-3Al-2.5V tube in cold rotary draw bending, J. Mater. Process. Technol. 212 (2012) 1973–1987. doi:dx.doi.org/10.1016/j.jmatprotec.2012.04.022.

29. S.A. Tronvoll, J. Ma, T. Welo, Deformation behavior in tube bending: a comparative study of compression bending and rotary draw bending, Int. J. Adv. Manuf. Technol. 124 (2023) 801–816. doi:10.1007/s00170-022-10433-7.

30. B. Engel, H. Hassan, The influence of material properties on rotary draw bending processes, (2014) 8–12.

31. H. Yang, R.J. Gu, M. Zhan, H. Li, Effect of frictions on cross section quality of thin-walled tube NC bending, Trans. Nonferrous Met. Soc. China (English Ed. 16 (2006) 878–886. doi:10.1016/S1003-6326(06)60344-0.

32. B. Engel, H. Hassan, Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes, Int. J. Mater. Metall. Eng. 9 (2015) 239–243.

33. Altimemy, M., Ibrhim, A.K., Hassan, H.R., Hayawi, M.J., Computational Study of Pump Turbine Performance Operating at Off-Design Condition-Part I: Vortex Rope Dynamic Effects, CFD LettersThis link is disabled., 2025, 17(3), pp. 148–166

34. Cao, F., Al-Bahrani, M., Smait, D.A., ... Nasajpour-Esfahani, N., Hekmatifar, M., Effective parameters on the combustion performance of coated aluminum hydride nanoparticles: A molecular dynamics study, Materials Today CommunicationsThis link is disabled., 2023, 36, 106586

35. Hasan, H., Egab, K., Hassan, H., Thermal and hydraulic characteristics study of different dimpled micro-channel heat sinks, AIP Conference ProceedingsThis link is disabled., 2021, 2404, 080009

36. Egab, K., Oudah, S.K., Nassar, A.A., Hassan, H.R., Bhuiyan, Y., Investigation of temperature effect on cracked pressurized pipes, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2018, 4A-2018

Downloads

Published

2025-07-31

How to Cite

Hassan, H. R. (2025). The Effect of the Different Coefficient of Friction in Clamp Dies on the Pipe Deformation. American Journal of Technology Advancement, 2(7), 99–111. Retrieved from https://semantjournals.org/index.php/AJTA/article/view/2265