Balancing Data Accessibility and Security in Cloud-Based Business Intelligence Systems

Authors

  • Sanjida Akrer Sarna Master of Science in Business Analytics, Trine University, USA
  • Md Imran Khan Master of Science in information studies, Trine University, USA
  • Md Rakibuzzaman Officer at Department of Banking Inspection, Bangladesh Bank, Dhaka, Bangladesh

Keywords:

Business intelligence on the Cloud, Data Accessibility, Information Security, Security Breaches, Access Control Mechanisms and Zero Trust Framework

Abstract

In the modern data-driven business world, Business Intelligence (BI) systems in cloud-management environments facilitate real-time decision making, scalable intelligence, and multi-user sharing of data. BI Cloud-based systems have transformed data business through scalable on demand access to analytics and decision-support tools. Organizational agility by democratizing data access in departments, yet pose a huge risk in terms of data security, data privacy and regulatory compliance. With rising business use of cloud BI platforms, the competing needs of maximum data access and highly secure systems are becoming an essential issue. This study examines this balance by examining real world security breach episodes with the Security Breach dataset that contains rich records of 173 security breaches in several firms and industries. The paper focuses on types of breach, points of origination of data, participation of third-party business associates and magnitude of compromised information. It is worth noting that the most common breaches identified effortlessly deal with breaches on network servers and portable gadgets and that external business associates make up a large percentage of these breaches. This paper shows via pattern recognition and descriptive analytics how simple cloud-based BI attacks with access controls failing, inadequately encrypted information and the absence of constant observation endangers the cloud-based BI setting through a typical variety of errors and mishaps. It also points out the trade-offs that organizations must make including empowering self-service analytics or ensuring stringent access-restrictions. The analysis provides a model that incorporates Zero Trust Architecture, Role and Attribute-Based Access Control, encryption standards and third-party control, to assist companies secure their Business Intelligence infrastructure in a way that is non-detrimental to the valid information flow. This study gives practical guidance to IT executives, security architectures, and data governance experts who want to ensure a fine balance between accessibility and security in cloud BI systems. The results stress the role of a multi-tier, policy-based solution to safeguard sensitive business information and keep the benefits of real-time cloud analytics.

References

1. El Ghalbzouri, H., & El Bouhdidi, J. (2021). Integrating business intelligence with cloud computing: State of the art and fundamental concepts. Networking, Intelligent Systems and Security: Proceedings of NISS 2021, 197-213. https://link.springer.com/chapter/10.1007/978-981-16-3637-0_14

2. Rahman, S., & Hossain, M. Z. (2024). Cloud-based management information systems opportunities and challenges for small and medium enterprises (SMEs). Pacific Journal of Business Innovation and Strategy, 1(1), 28-37. https://scienceget.org/index.php/pjbis/article/view/14

3. Alwaheidi, M. K., & Islam, S. (2022). Data-driven threat analysis for ensuring security in cloud enabled systems. Sensors, 22(15), 5726. https://www.mdpi.com/1424-8220/22/15/5726

4. Devi, K. D. S., Sumathi, D., Vignesh, V., Anilkumar, C., Kataraki, K., & Balakrishnan, S. (2023). CLOUD load balancing for storing the internet of things using deep load balancer with enhanced security. Measurement: Sensors, 28, 100818. https://www.sciencedirect.com/science/article/pii/S266591742300154X

5. Boopathi, S. (2024). Balancing Innovation and Security in the Cloud: Navigating the Risks and Rewards of the Digital Age. In Improving Security, Privacy, and Trust in Cloud Computing (pp. 164-193). IGI Global Scientific Publishing. https://www.igi-global.com/chapter/balancing-innovation-and-security-in-the-cloud/338354

6. Leonard, Z. (2023). Ethical Challenges in Cloud Environments: Redefining Business Intelligence with AI. https://www.researchgate.net/profile/Zander-Leonard/publication/387021658_Ethical_Challenges_in_Cloud_Environments_Redefining_Business_Intelligence_with_AI/links/675c55522547a96a923051da/Ethical-Challenges-in-Cloud-Environments-Redefining-Business-Intelligence-with-AI.pdf

7. Chowdhury, R. H. (2021). Cloud-Based Data Engineering for Scalable Business Analytics Solutions: Designing Scalable Cloud Architectures to Enhance the Efficiency of Big Data Analytics in Enterprise Settings. Journal of Technological Science & Engineering (JTSE), 2(1), 21-33. https://www.rsepress.org/index.php/jtse/article/view/93

8. Hosen, M. S., Islam, R., Naeem, Z., Folorunso, E. O., Chu, T. S., Al Mamun, M. A., & Orunbon, N. O. (2024). Data-driven decision making: Advanced database systems for business intelligence. Nanotechnology Perceptions, 20(3), 687-704. https://www.researchgate.net/profile/Esther-Folorunso-3/publication/382695215_Data-Driven_Decision_Making_Advanced_Database_Systems_for_Business_Intelligence/links/66a9e30775fcd863e5eae75d/Data-Driven-Decision-Making-Advanced-Database-Systems-for-Business-Intelligence.pdf

9. Hamidinava, F., Ebrahimy, A., Samiee, R., & Didehkhani, H. (2021). A model of business intelligence on cloud for managing SMEs in COVID-19 pandemic (Case: Iranian SMEs). Kybernetes, 52(1), 207-234. https://www.emerald.com/insight/content/doi/10.1108/k-05-2021-0375/full/html

10. Geetha, C., Neduncheliyan, S., & Khang, A. (2023). Dual access control for cloud-based data storage and sharing. In Smart Cities (pp. 321-336). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003376064-17/dual-access-control-cloud-based-data-storage-sharing-geetha-neduncheliyan-alex-khang

11. Abioye, T. E., Arogundade, O. T., Misra, S., Adesemowo, K., & Damaševičius, R. (2021). Cloud-based business process security risk management: A systematic review, taxonomy, and future directions. Computers, 10(12), 160. https://www.mdpi.com/2073-431X/10/12/160

12. Chen, J., Ramanathan, L., & Alazab, M. (2021). Holistic big data integrated artificial intelligent modeling to improve privacy and security in data management of smart cities. Microprocessors and Microsystems, 81, 103722. https://www.sciencedirect.com/science/article/abs/pii/S014193312030867X

13. Dornala, R. R. (2023). Ensemble security and multi-cloud load balancing for data in edge-based computing applications. International Journal of Advanced Computer Science and Applications, 14(8). https://www.proquest.com/openview/38ba356e19f34bb190e453029260ccb3/1?pq-origsite=gscholar&cbl=5444811

14. Rehan, H. (2024). AI-driven cloud security: The future of safeguarding sensitive data in the digital age. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 1(1), 132-151. https://newjaigs.com/index.php/JAIGS/article/view/89

15. Vashishth, T. K., Sharma, V., Kumar, B., & Sharma, K. K. (2024). Cloud-Based data management for behavior analytics in business and finance sectors. In Data-Driven Modelling and Predictive Analytics in Business and Finance (pp. 133-155). Auerbach Publications. https://www.taylorfrancis.com/chapters/edit/10.1201/9781032618845-9/cloud-based-data-management-behavior-analytics-business-finance-sectors-tarun-kumar-vashishth-vikas-sharma-bhupendra-kumar-kewal-krishan-sharma

16. Mishra, S., & Mishra, P. (2022). Analysis of platform business and secure business intelligence. International Journal of Financial Engineering, 9(03), 2250002. https://www.worldscientific.com/doi/abs/10.1142/S2424786322500025

17. Oloruntoba, O. (2024). Business continuity in database systems: The role of data guard and oracle streams. World Journal of Advanced Research and Reviews, 22(3), 2266-85. https://www.researchgate.net/profile/Oluwafemi-Oloruntoba/publication/389653148_Business_continuity_in_database_systems_The_role_of_data_guard_and_oracle_streams/links/67cb53487c5b5569dcb83577/Business-continuity-in-database-systems-The-role-of-data-guard-and-oracle-streams.pdf

18. Banerjee, S., Whig, P., & Parisa, S. K. (2024). Leveraging AI for Personalization and Cybersecurity in Retail Chains: Balancing Customer Experience and Data Protection. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 16, 16. https://www.researchgate.net/profile/Somnath-Banerjee-13/publication/391460557_Leveraging_AI_for_Personalization_and_Cybersecurity_in_Retail_Chains_Balancing_Customer_Experience_and_Data_Protection/links/681979cedf0e3f544f5210cf/Leveraging-AI-for-Personalization-and-Cybersecurity-in-Retail-Chains-Balancing-Customer-Experience-and-Data-Protection.pdf

19. Khunger, A. (2023). Fault-Tolerant Load Balancing In Cloud-Based Financial Analytics: A Reinforcement Learning Approach. International Journal of Innovation Studies. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5146521

20. Bauskar, S. (2024). A Review on Database Security Challenges in Cloud Computing Environment. Available at SSRN 4988780. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4988780

21. Akinbolaji, T. J. (2024). Novel strategies for cost optimization and performance enhancement in cloud-based systems. International Journal of Modern Science and Research Technology.

22. Ravichandran, P., Machireddy, J. R., & Rachakatla, S. K. (2022). AI-Enhanced data analytics for real-time business intelligence: Applications and challenges. Journal of AI in Healthcare and Medicine, 2(2), 168-195. https://www.researchgate.net/profile/Jeshwanth-Reddy-Machireddy/publication/389139259_AI-Enhanced_Data_Analytics_for_Real-Time_Business_Intelligence_Applications_and_Challenges/links/67b6b9bf8311ce680c6b089c/AI-Enhanced-Data-Analytics-for-Real-Time-Business-Intelligence-Applications-and-Challenges.pdf

23. Aljawarneh, S., & Malhotra, M. (Eds.). (2020). Impacts and Challenges of Cloud Business Intelligence. IGI Global. https://books.google.co.in/books?hl=en&lr=&id=OXkSEAAAQBAJ&oi=fnd&pg=PR1&dq=Balancing+Data+Accessibility+and+Security+in+Cloud-Based+Business+Intelligence+Systems&ots=5PoSTTW_-r&sig=bGSFUPwyrJDNjzbMmARb9DqzEBo&redir_esc=y#v=onepage&q=Balancing%20Data%20Accessibility%20and%20Security%20in%20Cloud-Based%20Business%20Intelligence%20Systems&f=false

24. Shivaramakrishna, D., & Nagaratna, M. (2023). A novel hybrid cryptographic framework for secure data storage in cloud computing: Integrating AES-OTP and RSA with adaptive key management and Time-Limited access control. Alexandria Engineering Journal, 84, 275-284. https://www.sciencedirect.com/science/article/pii/S1110016823009651

25. Yathiraju, N. (2022). Investigating the use of an artificial intelligence model in an ERP cloud-based system. International Journal of Electrical, Electronics and Computers, 7(2), 1-26. https://d1wqtxts1xzle7.cloudfront.net/85514837/IJEEC_01_march_april_2022-libre.pdf?1651730943=&response-content-disposition=inline%3B+filename%3DInvestigating_the_use_of_an_Artificial_I.pdf&Expires=1751011213&Signature=KGYNT7lIyrv~m4gSc-nc1fcktFw-~N4VL9mAQn7z5O-lx7ivM5X8AXJ5bGHtE7CdN2QcyWKLcroWqlTP5sKFItt~B4K6pWTbEqMIGnRtrUaNnUIo~Y81o~A0zwuh7fcCTFiWsonxICaeNnLWGgNdrnPC~85sqp3KjjBz-uvKcuQYBR8saSj7NcZY4u3Xa3ucGGizd1HcX33QuyOPFARSP0KjOzyCOKVYX7YYzKiq1u9XzYpeO38gzpRcKk9MA8-RIIOAdi6-DeWCrK1Ufgfjy5NqpkLNCl-YKmSnkmeP1Knywe205DSwmUPSLLcX6~cYGNpfh8Tz9APGmJC4D7hwkw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

26. Moparthi, N. R., Balakrishna, G., Chithaluru, P., Kolla, M., & Kumar, M. (2023). An improved energy-efficient cloud-optimized load-balancing for IoT frameworks. Heliyon, 9(11). https://arxiv.org/abs/2304.13738

27. Moparthi, N. R., Balakrishna, G., Chithaluru, P., Kolla, M., & Kumar, M. (2023). An improved energy-efficient cloud-optimized load-balancing for IoT frameworks. Heliyon, 9(11). https://www.cell.com/heliyon/fulltext/S2405-8440(23)09155-7

28. Raghavendar, K., Batra, I., & Malik, A. (2023). A robust resource allocation model for optimizing data skew and consumption rate in cloud-based IoT environments. Decision Analytics Journal, 7, 100200. https://www.sciencedirect.com/science/article/pii/S2772662223000401

29. Daruvuri, R., Ravikumar, R., Mannem, P., & Aeniga, S. R. (2024). Augmenting Business Intelligence How AI and Data Engineering Elevate Power BI Analytics. International Journal of Innovative Research in Computer and Communication Engineering, 12(12), 13012-13022. https://www.researchgate.net/profile/Pravallika-Mannem-2/publication/386568132_Augmenting_Business_Intelligence_How_AI_and_Data_Engineering_Elevate_Power_BI_Analytics/links/67660b4f00aa3770e0af4c40/Augmenting-Business-Intelligence-How-AI-and-Data-Engineering-Elevate-Power-BI-Analytics.pdf

30. Bussa, S. (2023). Enhancing BI tools for improved data visualization and insights. International Journal of Computer Science and Mobile Computing, 12(2), 70-92. https://d1wqtxts1xzle7.cloudfront.net/119982050/V12I2202307-libre.pdf?1733248136=&response-content-disposition=inline%3B+filename%3DEnhancing_BI_Tools_for_Improved_Data_Vis.pdf&Expires=1751011380&Signature=fkqcnSziOe6WEuK3HhFTriNiFoUJQX9lWqfymmESGvcLqBQ4DFbWsUuYUatkXkvyVavX1h4V2Nt3DGpyxu~woBLXaHIHcwphLK9A9634yTgL2ueBNVClGSiK~c59M1t6gwjEqHZXautY9UD36nLSSZBcctrQLC-aFI8ceXOwTqeI4y4sJrjETXmM6QROuX1GCfk4Pc2zslZQpMwRrFwUOzo9vRWXYTzF9brUCmRz1D4bQmzBLbBMw5SfxtFe-XCdRz4at9soiQg1SfXF4Q2p9Aj9IwzC98rPQ4MWqtYTtHwEf0m70YOd4qLHKCfCVaR12Pd0Lwe7O2RD0up9~R4OOA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

31. Polamarasetti, A. (2024, November). Role of Artificial Intelligence and Machine Learning to Enhancing Cloud Security. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE. https://ieeexplore.ieee.org/abstract/document/10837120

32. Tatineni, S. (2023). Cloud-Based Reliability Engineering: Strategies for Ensuring High Availability and Performance. International Journal of Science and Research (IJSR), 12(11), 1005-1012. https://d1wqtxts1xzle7.cloudfront.net/109038178/SR231113060258-libre.pdf?1702686624=&response-content-disposition=inline%3B+filename%3DCloud_Based_Reliability_Engineering_Stra.pdf&Expires=1751011623&Signature=GwhBiS7dKKPJ3Ekk4mjM2Mx2C5-Tem2WSZeIoPknQlNgLC9eqxcqFSsozgsB7F~aCt1ajwUAS-4mUAps2Iu7UFM8OgNRxRHEAK2hPF27cujf2ZJIJaT0M9nOFIHkqZ6faDTTEsj4z1KxGvjUtYa2BI~kGPQp~Hs1Rbm1FjfjV-Y393k~XxgCTogDysFh5DPcFrmuNv6W-uMeSmaRIgruBcPVXe4j~3ZDePoXKR1rhhZOg4MP6m2POpb1LGahEa-IVJDIFheT6VNQ8xfWaSQIs4n5q11xzk-o8hjAQ-gtv3EG2Kg0hg6QCiEFFXzHh7e1wPOY7DpZ2~lKxzvTkqnHiQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

33. Egbuhuzor, N. S., Ajayi, A. J., Akhigbe, E. E., Agbede, O. O., Ewim, C. P. M., & Ajiga, D. I. (2021). Cloud-based CRM systems: Revolutionizing customer engagement in the financial sector with artificial intelligence. International Journal of Science and Research Archive, 3(1), 215-234. https://www.researchgate.net/profile/Nnaemeka-Egbuhuzor/publication/389906574_Cloud-based_CRM_systems_Revolutionizing_customer_engagement_in_the_financial_sector_with_artificial_intelligence/links/67d84acc7d56ad0a0f059b5d/Cloud-based-CRM-systems-Revolutionizing-customer-engagement-in-the-financial-sector-with-artificial-intelligence.pdf

34. Das, J. (2020). Leveraging Cloud Computing for Medical AI: Scalable Infrastructure and Data Security for Advanced Healthcare Solutions. INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS, 7, 504-514. https://www.researchgate.net/profile/Jyotipriya-Das/publication/389782177_Leveraging_Cloud_Computing_for_Medical_AI_Scalable_Infrastructure_and_Data_Security_for_Advanced_Healthcare_Solutions/links/67d1d741bab3d32d84414f4f/Leveraging-Cloud-Computing-for-Medical-AI-Scalable-Infrastructure-and-Data-Security-for-Advanced-Healthcare-Solutions.pdf

35. Boppana, V. R. (2021). Ethical Considerations in Managing PHI Data Governance during Cloud Migration. Educational Research (IJMCER), 3(1), 191-203. https://www.ijmcer.com/wp-content/uploads/2024/10/IJMCER_Z0310191203.pdf

36. Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. Available at SSRN 4977121. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4977121

37. Singha, S., & Singha, R. (2023). Protecting data and privacy: cloud-based solutions for intelligent transportation applications. Scalable computing: practice and experience, 24(3), 257-276. https://scpe.org/index.php/scpe/article/view/2381

38. Kendyala, S. H. (2023). High Availability Strategies for Identity Access Management Systems in Large Enterprises. Available at SSRN 5074869. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5074869

39. Mir, A. A. (2024). Optimizing mobile cloud computing architectures for real-time big data analytics in healthcare applications: Enhancing patient outcomes through scalable and efficient processing models. Integrated Journal of Science and Technology, 1(2). https://ijstpublication.com/index.php/ijst/article/view/10

40. Wang, Y., & Kogan, A. (2020). Cloud-based in-memory columnar database architecture for continuous audit analytics. Journal of Information Systems, 34(2), 87-107. https://publications.aaahq.org/jis/article-abstract/34/2/87/1173/Cloud-Based-In-Memory-Columnar-Database

41. Parisa, S. K., Banerjee, S., & Whig, P. (2023). AI-Driven Zero Trust Security Models for Retail Cloud Infrastructure: A Next-Generation Approach. International Journal of Sustainable Devlopment in field of IT, 15(15). https://www.researchgate.net/profile/Somnath-Banerjee-13/publication/390098789_AI-Driven_Zero_Trust_Security_Models_for_Retail_Cloud_Infrastructure_A_Next-Generation_Approach/links/67df803dfe0f5a760f896295/AI-Driven-Zero-Trust-Security-Models-for-Retail-Cloud-Infrastructure-A-Next-Generation-Approach.pdf

42. Pasham, S. D. (2023). Privacy-preserving data sharing in big data analytics: A distributed computing approach. The Metascience, 1(1), 149-184. http://yuktabpublisher.com/index.php/TMS/article/view/130

43. [39]. Dubey, H. A. R. S. H. I. T., Kumar, S. U. D. H. A. K. A. R., & Chhabra, A. N. U. R. E. E. T. (2022). Cyber security model to secure data transmission using cloud cryptography. Cyber Secur. Insights Mag, 2, 9-12. https://insights2techinfo.com/wp-content/uploads/2022/11/Cyber-Security-Model-to-Secure-Data-Transmission-using-Cloud-Cryptography_final_2.pdf

44. Ekundayo, F., Atoyebi, I., Soyele, A., & Ogunwobi, E. (2024). Predictive Analytics for Cyber Threat Intelligence in Fintech Using Big Data and Machine Learning. Int J Res Publ Rev, 5(11), 1-15. https://www.researchgate.net/profile/Foluke-Ekundayo/publication/386144447_Predictive_Analytics_for_Cyber_Threat_Intelligence_in_Fintech_Using_Big_Data_and_Machine_Learning/links/67469330f309a268c00e696c/Predictive-Analytics-for-Cyber-Threat-Intelligence-in-Fintech-Using-Big-Data-and-Machine-Learning.pdf

45. Srivastava, G., S, M., Venkataraman, R., V, K., & N, P. (2022). A review of the state of the art in business intelligence software. Enterprise Information Systems, 16(1), 1-28. https://www.tandfonline.com/doi/abs/10.1080/17517575.2021.1872107

46. Kumar, R., & Agrawal, N. (2023). Analysis of multi-dimensional Industrial IoT (IIoT) data in Edge–Fog–Cloud based architectural frameworks: A survey on current state and research challenges. Journal of Industrial Information Integration, 35, 100504. https://www.sciencedirect.com/science/article/abs/pii/S2452414X23000778

47. Fatima, A., Khan, T. A., Abdellatif, T. M., Zulfiqar, S., Asif, M., Safi, W., ... & Al-Kassem, A. H. (2023, March). Impact and research challenges of penetrating testing and vulnerability assessment on network threat. In 2023 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-8). IEEE. https://ieeexplore.ieee.org/abstract/document/10111168

48. Kundavaram, V. N. K. (2024). Automated Data Migration in Cloud Environments: Challenges and Solutions. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING AND TECHNOLOGY (IJCET), 15(6), 262-274. https://d1wqtxts1xzle7.cloudfront.net/122798319/AUTOMATED_DATA_MIGRATION_IN_CLOUD_ENVIRONMENTS_CHALLENGES_AND_SOLUTIONS_IJCET_15_06_022-libre.pdf?1747279821=&response-content-disposition=inline%3B+filename%3DAUTOMATED_DATA_MIGRATION_IN_CLOUD_ENVIRO.pdf&Expires=1751012621&Signature=b5T89L~lKXVVXjMwZCQxV-ACLTl-VffhaUQzohbrvTBWey5m0UpRPp7OI7Wko4Vyd6lqqNn2zl~KzuKW3LM0YFU1DYy0Q~K7T6XYwhA~zGgSdMcUDSpTeJc3Ptj43~9Shc1KmyXwQqWNqoG-1OJQY7v0hYfSVj4zcuaeP-9~q0L~rnrOqrXhEVB322cRIBw9bunbLIPGiQMJgrXRoUJ7l~BZZEih9v0VUV2rZ4cwvF7NPA-gyLzETQiwdDCm-OCCPFMg9xVV~dFCk4SAuwbLi4ya3~BQQawsADnI4zKe7IHgnMqI2vFPlGnm8TMAA3moB812af49AvLc97nVzMAzqQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

49. Katari, A. (2022). Data lakes and Optimizing Query. Available at SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4984244

50. Tabrizchi, H., & Kuchaki Rafsanjani, M. (2020). A survey on security challenges in cloud computing: issues, threats, and solutions. The journal of supercomputing, 76(12), 9493-9532. https://link.springer.com/article/10.1007/s11227-020-03213-1

51. Ravi, V. K., & Ayyagari, A. (2023). Data Lake Implementation in Enterprise Environments. International Journal of Progressive Research in Engineering Management and Science (IJPREMS) Vol, 3. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5068537

52. Tawfeeg, T. M., Yousif, A., Hassan, A., Alqhtani, S. M., Hamza, R., Bashir, M. B., & Ali, A. (2022). Cloud dynamic load balancing and reactive fault tolerance techniques: a systematic literature review (SLR). IEEE Access, 10, 71853-71873. https://ieeexplore.ieee.org/abstract/document/9815255

53. Ahmad, W., Rasool, A., Javed, A. R., Baker, T., & Jalil, Z. (2021). Cyber security in iot-based cloud computing: A comprehensive survey. Electronics, 11(1), 16. https://www.mdpi.com/2079-9292/11/1/16

54. Ang'udi, J. J. (2023). Security challenges in cloud computing: A comprehensive analysis. World Journal of Advanced Engineering Technology and Sciences, 10(2), 155-181. https://pdfs.semanticscholar.org/46fd/8be19bebe31752f113312772dd18b04290b8.pdf

55. Ikegwu, A. C., Nweke, H. F., Anikwe, C. V., Alo, U. R., & Okonkwo, O. R https://link.springer.com/article/10.1007/s10586-022-03568-5

56. Dornala, R. R. (2023, August). An advanced multi-model cloud services using load balancing algorithms. In 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 1065-1071). IEEE. https://ieeexplore.ieee.org/abstract/document/10220892

57. Gorantla, V. A. K., Gude, V., Sriramulugari, S. K., Yuvaraj, N., & Yadav, P. (2024, March). Utilizing hybrid cloud strategies to enhance data storage and security in e-commerce applications. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 494-499). IEEE. https://ieeexplore.ieee.org/abstract/document/10489749

58. Sourav, M. S. A., Khan, M. I., & Akash, T. R. (2020). Data Privacy Regulations and Their Impact on Business Operations: A Global Perspective. Journal of Business and Management Studies, 2(1), 49-67.

59. Oladosu, S. A., Ike, C. C., Adepoju, P. A., Afolabi, A. I., Ige, A. B., & Amoo, O. O. (2021). Advancing cloud networking security models: Conceptualizing a unified framework for hybrid cloud and on-premises integrations. Magna Scientia Advanced Research and Reviews. https://www.researchgate.net/profile/Olukunle-Amoo/publication/387727760_Advancing_cloud_networking_security_models_Conceptualizing_a_unified_framework_for_hybrid_cloud_and_on-premise_integrations/links/677992c6894c55208542f50c/Advancing-cloud-networking-security-models-Conceptualizing-a-unified-framework-for-hybrid-cloud-and-on-premise-integrations.pdf

60. Sandhu, A. K. (2021). Big data with cloud computing: Discussions and challenges. Big Data Mining and Analytics, 5(1), 32-40. https://ieeexplore.ieee.org/abstract/document/9663258

61. Kumar, S., & Aithal, P. S. (2023). Tech-Business Analytics in Secondary Industry Sector. International Journal of Applied Engineering and Management Letters (IJAEML), 7(4), 1-94. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4674849

62. Salako, A. O., Fabuyi, J. A., Aideyan, N. T., Selesi-Aina, O., Dapo-Oyewole, D. L., & Olaniyi, O. O. (2024). Advancing information governance in AI-driven cloud ecosystem: Strategies for enhancing data security and meeting regulatory compliance. Asian Journal of Research in Computer Science, 17(12), 66-88. http://journal.submanuscript.com/id/eprint/2644/

63. Ramachandra, M. N., Srinivasa Rao, M., Lai, W. C., Parameshachari, B. D., Ananda Babu, J., & Hemalatha, K. L. (2022). An efficient and secure big data storage in cloud environment by using triple data encryption standard. Big Data and Cognitive Computing, 6(4), 101.

64. Chatterjee, P., Bose, R., Banerjee, S., & Roy, S. (2023). Enhancing data security of cloud based lms. Wireless Personal Communications, 130(2), 1123-1139. https://link.springer.com/article/10.1007/s11277-023-10323-5

65. Md, R., & Tanvir Rahman, A. (2019). The Effects of Financial Inclusion Initiatives on Economic Development in Underserved Communities. American Journal of Economics and Business Management, 2(4), 191-198.

66. Tanvir Rahman, A., Md Sultanul Arefin, S., Sanjida Akter, S., & Md, R. (2023). Develop Automated Systems that Gather and Analyze Threat Data to Protect Business Systems Automatically from Cyberattacks. American Journal of Engineering, Mechanics and Architecture, 1(6), 90-113.

67. Dataset Link: https://www.kaggle.com/datasets/xontoloyo/security-breachhh

Downloads

Published

2024-10-30

How to Cite

Sarna, S. A., Khan, M. I., & Rakibuzzaman, M. (2024). Balancing Data Accessibility and Security in Cloud-Based Business Intelligence Systems. American Journal of Technology Advancement, 1(6), 60–88. Retrieved from https://semantjournals.org/index.php/AJTA/article/view/281

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.