Synthesis and Characterization of Titanate Nanotubes Via Hydrothermal Process using Temperature Gradient Technique

Authors

  • Mohammed A. Al-Behadili Chemical Engineering Department, College of Engineering, University of Basrah, Basrah, Iraq
  • Abdulwahid A. Al-Hajjaj Chemical Engineering Department, College of Engineering, University of Basrah, Basrah, Iraq

Keywords:

titanate nanotubes, hydrothermal synthesis, characterization

Abstract

Titanium nanotubes (TiNTs), as a type of novel nanomaterial, have received abundant attention due to their remarkable structural and functional properties, including a large surface area, excellent biocompatibility, high photochemical capability and good electronic performance. In this regard, the hydrothermal method is the most reliable synthetic method for titantate nanotubes, as the entire set of charac- teristics can be controlled accurately and more im- portantly the synthesis of well-defined nanostructures.

Here in, we describe the synthesis and characterization of titanate nanotubes, which were prepared viaa hydrothermal reaction strategy using temperature gradient. The experimental process started with the synthesis of TiNTs by hydrothermal reaction at room pressure. The final samples were further investigated by advanced analytical techniques, such as FTIR, SEM, TEM, and XRD, and all the analyses confirmed the crystalline phase of TiNT.

The XRD diffraction pattern of the prepared TiNTs, e.g., was quite different from that of the parent anatase TiNPs, for example. Sharp peaks could be seen at 2θ angles of 27.600°, 36.160°, 41.450°, 54.460°, 62.850°, and 69.200°, corresponding to the crystallographic plans (110), (101), (111), (211), (020), and (301), respectively. The characterizations proved that the well-ordered crystalline structure to be formed were TiNTs, indicating that the proposed hydrothermal synthesis was feasible.

References

1. Roy, P., Berger, S., & Schmuki, P. (2011). TiO₂ nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 50(13), 2904–2939. https://doi.org/10.1002/anie.201001374

2. Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891–2959. https://doi.org/10.1021/cr0500535

3. Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO₂ photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

4. Kaur, M., & Singh, K. (2020). Recent advances in titanium dioxide-based nanostructures for biomedical and environmental applications. Nanotechnology Reviews, 9(1), 1306–1324. https://doi.org/10.1515/ntrev-2020-0101

5. Zhou, X., Li, Y., Wang, X., Zhang, L., & Wang, W. (2019). Recent advances in applications of titanium dioxide nanomaterials: A review. Environmental Science: Nano, 6(2), 331–365. https://doi.org/10.1039/C8EN00714A

6. Roy, P., Berger, S., & Schmuki, P. (2011). TiO₂ nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 50(13), 2904–2939. https://doi.org/10.1002/anie.201001374

7. Ghosh, S., Basu, S., & Saha, A. (2015). Structure and formation mechanism of titanium oxide nanotubes synthesized by hydrothermal route. Materials Chemistry and Physics, 149, 11–20. https://doi.org/10.1016/j.matchemphys.2014.09.044

8. Zhang, H., & Banfield, J. F. (2000). Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO₂. The Journal of Physical Chemistry B, 104(15), 3481–3487. https://doi.org/10.1021/jp993819b

9. Liu, N., Chen, X., Zhang, J., & Schwank, J. W. (2013). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 225, 34–51. https://doi.org/10.1016/j.cattod.2013.10.090

10. Mohammed, N. M., Bashiri, R., Sufian, S., Kait, C. F., & Majidai, S. (2018). One-Dimensional titanium dioxide and its application for photovoltaic devices. In InTech eBooks. https://doi.org/10.5772/intechopen.72976

11. Hoyer, P. (1996). Formation of a titanium dioxide nanotube array. Langmuir, 12(6), 1411–1413. https://doi.org/10.1021/la9507803

12. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160–3163. https://doi.org/10.1021/la9713816

13. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160–3163. https://doi.org/10.1021/la9713816

14. Yu, J., & Yu, H. (2006). Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals. Materials Chemistry and Physics, 100(2–3), 507–512. https://doi.org/10.1016/j.matchemphys.2006.02.002

15. Yu, J., Yu, H., Cheng, B., & Trapalis, C. (2006). Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. Journal of Molecular Catalysis a Chemical, 249(1–2), 135–142. https://doi.org/10.1016/j.molcata.2006.01.003

16. Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006b). Protonated titanates and TIO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 18(21), 2807–2824. https://doi.org/10.1002/adma.200502696

17. Wang, Y., Hu, G., Duan, X., Sun, H., & Xue, Q. (2002). Microstructure and formation mechanism of titanium dioxide nanotubes. Chemical Physics Letters, 365(5–6), 427–431. https://doi.org/10.1016/s0009-2614(02)01502-6

18. Zhou, W., Li, Y., Wang, W., & Song, H. (2001). Formation and characterization of TiO₂ nanotube arrays prepared by hydrothermal process. Chemical Physics Letters, 350(1–2), 6–10. https://doi.org/10.1016/S0009-2614(01)01285-0

19. Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2005). TiO₂ nanotubes: self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1–2), 3–18. https://doi.org/10.1016/j.cossms.2008.01.005

20. Roy, P., Berger, S., & Schmuki, P. (2011). TiO₂ nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 50(13), 2904–2939. https://doi.org/10.1002/anie.201001374

21. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. (2006). A review on highly ordered, vertically oriented TiO₂ nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 90(14), 2011–2075. https://doi.org/10.1016/j.solmat.2006.04.007

22. Bavykin, D.V., Kulak, A.N., Walsh, F.C. (2010). Titanate and Titania Nanostructured Materials for Environmental and Electrochemical Applications. Crystal Growth & Design, 10(10), 4421–4427. https://doi.org/10.1021/cg100622h

23. Zavala, M. Á. L., Morales, S. a. L., & Ávila-Santos, M. (2017b). Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon, 3(11), e00456. https://doi.org/10.1016/j.heliyon.2017.e00456

24. Rempel, A. A., Valeeva, A. A., Vokhmintsev, A. S., & Weinstein, I. A. (2021). Titanium dioxide nanotubes: synthesis, structure, properties and applications. Russian Chemical Reviews, 90(11), 1397–1414. https://doi.org/10.1070/rcr4991

25. Fauzi, A., Lalasari, L. H., Sofyan, N., Ferdiansyah, A., Dhaneswara, D., & Yuwono, A. H. (2022). Synthesis of titanium dioxide nanotube derived from ilmenite mineral through post-hydrothermal treatment and its photocatalytic performance. Eastern-European Journal of Enterprise Technologies, 2(12 (116)), 15–29. https://doi.org/10.15587/1729-4061.2022.255145

26. Alkanad, K., Hezam, A., Al-Zaqri, N., Bajiri, M. A., Alnaggar, G., Drmosh, Q. A., Almukhlifi, H. A., & Krishnappagowda, L. N. (2022). One-Step hydrothermal synthesis of anatase TIO2 nanotubes for efficient photocatalytic CO2 reduction. ACS Omega, 7(43), 38686–38699. https://doi.org/10.1021/acsomega.2c04211

27. Sengupta, J., & Hussain, C. M. (2025). Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review. Nanomaterials, 15(13), 1044. https://doi.org/10.3390/nano15131044

28. Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated titanate and TiO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 18(21), 2807–2824. https://doi.org/10.1002/adma.200502696

29. Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006c). Protonated titanates and TIO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 18(21), 2807–2824. https://doi.org/10.1002/adma.200502696

30. Wei, M., Konishi, Y., Zhou, H., Sugihara, H., & Arakawa, H. (2004). A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chemical Physics Letters, 400(1–3), 231–234. https://doi.org/10.1016/j.cplett.2004.10.114

31. Ivekovic D., Gajovic A., Ceh M., Pihlar B., Electroanalysis 22 (2010) 2202–2210. https://doi.org/10.1002/elan.201090028

32. Al-Hajjaj, A., Zamora, B., Bavykin, D., Shah, A., Walsh, F., & Reguera, E. (2011). Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd3[Fe (CN)6]2 Prussian Blue analogue. International Journal of Hydrogen Energy, 37(1), 318–326. https://doi.org/10.1016/j.ijhydene.2011.09.094

33. I. A. Ismail, M. Z. Yusoff, F. B. Ismail, and P. Gunnasegaran, “Heat transfer enhancement with nanofluids: A review of recent applications and experiments,” International Journal of Heat and Technology, vol. 36, no. 4, pp. 1350–1361, Dec. 2018, doi: 10.18280/ijht.360426.

34. R. Barai, D. Kumar, A. Wankhade, and M. Kilic, “Heat transfer performance of nanofluids in heat exchanger: a review ARTICLE INFO,” vol. 9, no. 1, pp. 86–106, 2023, doi: 10.14744/jten.2023.xxxx.

35. Gareso, P. L., Heryanto, H., Sampebatu, E. C., Sampe, N., Palentek, V., Taba, P., Juarlin, E., & Aryanto, D. (2021). Synthesis and material characterization of TiO2 nanoparticles doped with iron (Fe). Journal of Physics Conference Series, 1763(1), 012059. https://doi.org/10.1088/1742-6596/1763/1/012059

36. Alturki, A. M., & Ayad, R. (2019b). Synthesis and Characterization of Titanium Dioxide Nanoparticles with a Dosimetry Study of their Ability to Enhance Radiation Therapy using a Low Energy X-ray Source. Indian Journal of Science and Technology, 12(9), 1–5. https://doi.org/10.17485/ijst/2019/v12i9/140977

37. Kholief, M. G., Hesham, A. E., Hashem, F. S., & Mohamed, F. M. (2024). Synthesis and utilization of titanium dioxide nano particle (TiO2NPs) for photocatalytic degradation of organics. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-53617-9

38. Albukhaty, S., Al-Bayati, L., Al-Karagoly, H., & Al-Musawi, S. (2020). Preparation and characterization of titanium dioxide nanoparticles andinvitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Animal Biotechnology, 33(5), 864–870. https://doi.org/10.1080/10495398.2020.1842751

39. Vats, T., & Sharma, S. N. (2019). Effect of annealing temperature on the structural, morphological and optical properties of TiO2 nanotubes and their composites with CdSe Quantum dots. Journal of Applied Research and Technology, 17(2). https://doi.org/10.22201/icat.16656423.2019.17.2.806

40. Lu, S., Zhong, H., Mo, D., Hu, Z., Zhou, H., & Yao, Y. (2017). A H-titanate nanotube with superior oxidative desulfurization selectivity. Green Chemistry, 19(5), 1371–1377. https://doi.org/10.1039/c6gc03573f

Downloads

Published

2025-07-23

How to Cite

Al-Behadili, M. A., & Al-Hajjaj, A. A. (2025). Synthesis and Characterization of Titanate Nanotubes Via Hydrothermal Process using Temperature Gradient Technique. American Journal of Technology Advancement, 2(7), 67–78. Retrieved from https://semantjournals.org/index.php/AJTA/article/view/2238